Acknowledgement
This study was supported by MSIT (Ministry of Science, ICT), Korea, under the National Program for Excellence in SW, supervised by IITP (Institute of Information & Communications Technology Planning & Evaluation) in 2024 (2021-0-01399).
References
- S. A. M. Khalifa et al., "Overview of bee pollination and its economic value for crop production," Insects, vol. 12, no. 8, p. 688, Jul. 2021. DOI: 10.3390/insects12080688
- S. Warner et al., "A scoping review on the effects of Varroa mite (Varroa destructor) on global honey bee decline," Science of the Total Environment, vol. 906, p. 167492, Jan. 2024. DOI: 10.1016/j.scitotenv.2023.167492
- D. vanEngelsdorp et al., "Colony collapse disorder: a descriptive study," PLoS ONE, vol. 4, no. 8, p. e6481, Aug. 2009. DOI: 10.1371/journal.pone.0006481
- J. Ellis, "Colony collapse disorder (CCD) in honey bees," University of Florida, Cooperative Extension Service, 2007.
- L. Insolia et al., "Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States," Scientific Reports, vol. 12, no. 1, p. 20787, Dec. 2022. DOI: 10.1038/s41598-022-24946-4
- A. Gregorc and B. Sampson, "Diagnosis of Varroa mite (Varroa destructor) and sustainable control in honey bee (Apis mellifera) colonies-A review," Diversity, vol. 11, no. 12, p. 243, Dec. 2019. DOI: 10.3390/d11120243
- P. Rosenkranz, P. Aumeier, and B. Ziegelmann, "Biology and control of Varroa destructor," Journal of Invertebrate Pathology, vol. 103, pp. S96-S119, Jan. 2010. DOI: 10.1016/j.jip.2009.07.016
- E. Amiri, M. K. Strand, O. Rueppell, and D. R. Tarpy "Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health," Insects, vol. 8, no. 2, p. 48, May 2017. DOI: 10.3390/insects8020048
- C. J. Jack and J. D. Ellis, "Integrated pest management control of Varroa destructor (Acari: Varroidae), the most damaging pest of (Apis mellifera L.) (Hymenoptera: Apidae) colonies," Journal of Insect Science, vol. 21, no. 5, p. 6, Sep. 2021. DOI: 10.1093/jisesa/ieab058
- A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, "Deep learning for computer vision: a brief review," Computational Intelligence and Neuroscience, vol. 2018, p. 7068349, Feb. 2018. DOI: 10.1155/2018/7068349
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788, Las Vegas, NV, USA, Jun. 2016. DOI: 10.1109/CVPR.2016.91
- T. Diwan, G. Anirudh, and J. V. Tembhurne, "Object detection using YOLO: challenges, architectural successors, datasets and applications," Multimedia Tools and Applications, vol. 82, no. 6, pp. 9243-9275, Mar. 2023. DOI: 10.1007/s11042-022-13644-y
- G. Jocher, A. Chaurasia, and J. Qiu, Ultralytics YOLO (Version 8.0.0), GitHub, Available: https://github.com/ultralytics/ultralytics
- M. Pietropaoli et al., "Evaluation of two commonly used field tests to assess Varroa destructor infestation on honey bee (Apis mellifera) colonies," Applied Sciences, vol. 11, no. 10, p. 4458, May 2021. DOI: 10.3390/app11104458
- Y. Kwon et al., "Proposal of an advanced YOLOX model for real-time detection of Vespa hornets (Hymenoptera; Vespidae), key pests of honey bees," Journal of Asia-Pacific Entomology, vol. 27, no. 2, p. 102234, Jun. 2024. DOI: 10.1016/j.aspen.2024.102234
- H. J. Gwak, Y. J. Kwon, and C. H. Lee, "Comparison of Vespa detection accuracy for deep learning models according to training dataset," Journal of Apiculture, vol. 38, no. 3, pp. 223-232, Sep. 2023. DOI: 10.17519/apiculture.2023.09.38.3.223
- S. K. Berkaya, E. S. Gunal, and S. Gunal, "Deep learning-based classification models for beehive monitoring," Ecological Informatics, vol. 64, p. 101353, Sep. 2021. DOI: 10.1016/j.ecoinf.2021.101353
- The Open AI Dataset Project (AI-Hub, South Korea), Dataset information, AI-Hub. Available: https://aihub.or.kr/aihub-data/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=71488
- S. Schurischuster and M. Kampel, VarroaDataset (1.2.0), Zenodo. Available: https://doi.org/10.5281/zenodo.4085044
- I. Ahmad et al., "Deep learning based detector YOLOv5 for identifying insect pests," Applied Sciences, vol. 12, no. 19, p. 10167, Oct. 2022. DOI: 10.3390/app121910167
- R. Bai et al., "Improving detection capabilities of YOLOv8-n for small objects in remote sensing imagery: towards better precision with simplified model complexity," Preprint, Jun. 2023. DOI: 10.21203/rs.3.rs-3085871/v1
- J. Farooq, M. Muaz, K. K. Jadoon, N. Aafaq, and M. K. A. Khan, "An improved YOLOv8 for foreign object debris detection with optimized architecture for small objects," Multimedia Tools and Applications, vol. 83, no. 21, pp. 60921-60947, Jun. 2024. DOI: 10.1007/s11042-023-17838-w
- F. M. Talaat and H. ZainEldin, "An improved fire detection approach based on YOLO-v8 for smart cities," Neural Computing and Applications, vol. 35, pp. 20939-20954, Oct. 2023. DOI: 10.1007/s00521-023-08809-1
- H.-D. Lee, S.-G. Kim, S.-C Na, J.-Y. Ham, and C. Kwak, "A Study on Traffic Vulnerable Detection Using Object Detection-Based Ensemble and YOLOv5," Journal of the Korea Society of Computer and Information, vol. 29, no. 1, pp. 61-68, Jan. 2024. DOI: 10.9708/jksci.2024.29.01.06
- C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors," Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464-7475, Vancouver, BC, Canada, Jun. 2023. DOI: 10.1109/CVPR52729.2023.00721
- G. Wang et al., "UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios," Sensors, vol. 23, no. 16, p. 7190, Aug. 2023. DOI: 10.3390/s23167190
- R. Varghese and S. M., "YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness," Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), pp. 1-6, Chennai, India, May 2024. DOI: 10.1109/ADICS58448.2024.10533619
- I. J. Jacob, S. Piramuthu, and P. Falkowski-Gilski, "Data Intelligence and Cognitive Informatics: Proceedings of ICDICI 2023," Springer Nature, 2024.
- X. Zhang, F. Wan, C. Liu, X. Ji, and Q. Ye, "Learning to Match Anchors for Visual Object Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 6, pp. 3096-3109, Jun. 2022. DOI: 10.1109/TPAMI.2021.3050494
- X. Zhai, Z. Huang, T. Li, H. Liu, and S. Wang, "YOLO-Drone: an optimized YOLOv8 network for tiny UAV object detection," Electronics, vol. 12, no. 17, p. 3664, Aug. 2023. DOI: 10.3390/electronics12173664
- J. Moon, M. Bukhari, C. Kim, Y. Nam, M. Maqsood, and S. Rho, "Object detection under the lens of privacy: A critical survey of methods, challenges, and future directions," ICT Express, vol. 10, no. 5, pp. 1124-1144, Oct. 2024. DOI: 10.1016/j.icte.2024.07.005
- B. Ali, M. Bukhari, M. Maqsood, J. Moon, E. Hwang, and S. Rho, "An end-to-end gait recognition system for covariate conditions using custom kernel CNN," Heliyon, vol. 10, no. 12, p. 32934, Jun. 2024. DOI: 10.1016/j.heliyon.2024.e32934
- F. Ullah, J. Moon, H. Naeem, and S. Jabbar, "Explainable artificial intelligence approach in combating real-time surveillance of COVID19 pandemic from CT scan and X-ray images using ensemble model," The Journal of Supercomputing, vol. 78, pp. 19246-19271, Nov. 2022. DOI: 10.1007/s11227-022-04631-z
- J. Oh, J. Lee, D. Kim, B.-Y. Kim, and J. Moon, "A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction," Journal of the Korea Society of Computer and Information, vol. 28, no. 11, pp. 29-42, Nov. 2023. DOI: 10.9708/jksci.2023.28.11.029
- C. Kim, S. Jung, J. Moon, and H. Hwang, "Detecting Mode Drop and Collapse in GANs Using Simplified Frechet Distance," Journal of KIISE, vol. 46, no. 10, pp. 1012-1019, Oct. 2019, DOI: 10.5626/JOK.2019.46.10.1012.