DOI QR코드

DOI QR Code

A YOLOv8-Based Two-Stage Framework for Non-Destructive Detection of Varroa destructor Infestations in Apis mellifera Colonies

  • Yongsun Lee (Dept. of AI and Big Data, Soonchunhyang University) ;
  • Hyunsu Cho (Asan Middle School) ;
  • Bo-Young Kim (Asan Middle School) ;
  • Jihoon Moon (Dept. of AI and Big Data, Soonchunhyang University)
  • Received : 2024.09.27
  • Accepted : 2024.10.18
  • Published : 2024.10.31

Abstract

The European honeybee (Apis mellifera) is an important pollinator threatened by colony collapse disorder (CCD), primarily due to infestation by the Varroa mite (Varroa destructor). Traditional detection methods are invasive and time-consuming, often causing additional stress to colonies. We propose a two-stage framework using the You Only Look Once version 8 (YOLOv8) model for non-destructive and rapid detection of Varroa mite infestation. The framework uses comb light images from inside the hives. In the first stage, a YOLOv8-n model detects bees and extracts individual bee images. In the second stage, a YOLOv8-cls model classifies the infestation status of each bee. Our object detection model achieved a mAP@0.5 of 0.701, and the classification model achieved an average accuracy of 91%. These results demonstrate the effectiveness of the framework as a non-destructive method for Varroa mite detection. Based on this research, we expect to provide beekeepers with an efficient tool for early detection and management of Varroa mite infestations, potentially reducing the incidence of CCD and supporting the sustainability of apiculture.

유럽 꿀벌(Apis mellifera)은 중요한 화분매개자로서 군집 붕괴 현상(CCD)으로 위협받고 있으며, 이는 주로 바로아 응애(Varroa destructor) 감염에 기인한다. 기존의 감염 검사는 침습적이고 시간이 많이 소요되어 벌통에 추가적인 스트레스를 준다. 본 논문에서는 YOLOv8 모델을 활용한 비파괴적이고 신속한 바로아 응애 감염 검사를 위한 2단계 프레임워크를 제안한다. 프레임워크는 벌통 내부에서 촬영한 소초광 이미지를 사용한다. 첫 번째 단계에서 YOLOv8-n 모델로 벌 객체를 탐지하고 개별 벌 이미지를 추출한다. 두 번째 단계에서 YOLOv8-cls 모델로 각 벌의 감염 여부를 판별한다. 제안한 모델은 객체 탐지에서 mAP@0.5 0.701, 감염 분류에서 평균 정확도 91%를 달성하여 효과적인 비파괴적 검사 방법임을 입증한다. 본 연구를 바탕으로 양봉가들에게 바로아 응애 감염의 조기 발견과 관리를 위한 효율적인 도구를 제공하여 CCD 발생을 감소시키고 양봉업의 지속 가능성을 지원할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

This study was supported by MSIT (Ministry of Science, ICT), Korea, under the National Program for Excellence in SW, supervised by IITP (Institute of Information & Communications Technology Planning & Evaluation) in 2024 (2021-0-01399).

References

  1. S. A. M. Khalifa et al., "Overview of bee pollination and its economic value for crop production," Insects, vol. 12, no. 8, p. 688, Jul. 2021. DOI: 10.3390/insects12080688 
  2. S. Warner et al., "A scoping review on the effects of Varroa mite (Varroa destructor) on global honey bee decline," Science of the Total Environment, vol. 906, p. 167492, Jan. 2024. DOI: 10.1016/j.scitotenv.2023.167492 
  3. D. vanEngelsdorp et al., "Colony collapse disorder: a descriptive study," PLoS ONE, vol. 4, no. 8, p. e6481, Aug. 2009. DOI: 10.1371/journal.pone.0006481 
  4. J. Ellis, "Colony collapse disorder (CCD) in honey bees," University of Florida, Cooperative Extension Service, 2007. 
  5. L. Insolia et al., "Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States," Scientific Reports, vol. 12, no. 1, p. 20787, Dec. 2022. DOI: 10.1038/s41598-022-24946-4 
  6. A. Gregorc and B. Sampson, "Diagnosis of Varroa mite (Varroa destructor) and sustainable control in honey bee (Apis mellifera) colonies-A review," Diversity, vol. 11, no. 12, p. 243, Dec. 2019. DOI: 10.3390/d11120243 
  7. P. Rosenkranz, P. Aumeier, and B. Ziegelmann, "Biology and control of Varroa destructor," Journal of Invertebrate Pathology, vol. 103, pp. S96-S119, Jan. 2010. DOI: 10.1016/j.jip.2009.07.016 
  8. E. Amiri, M. K. Strand, O. Rueppell, and D. R. Tarpy "Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health," Insects, vol. 8, no. 2, p. 48, May 2017. DOI: 10.3390/insects8020048 
  9. C. J. Jack and J. D. Ellis, "Integrated pest management control of Varroa destructor (Acari: Varroidae), the most damaging pest of (Apis mellifera L.) (Hymenoptera: Apidae) colonies," Journal of Insect Science, vol. 21, no. 5, p. 6, Sep. 2021. DOI: 10.1093/jisesa/ieab058 
  10. A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, "Deep learning for computer vision: a brief review," Computational Intelligence and Neuroscience, vol. 2018, p. 7068349, Feb. 2018. DOI: 10.1155/2018/7068349 
  11. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788, Las Vegas, NV, USA, Jun. 2016. DOI: 10.1109/CVPR.2016.91 
  12. T. Diwan, G. Anirudh, and J. V. Tembhurne, "Object detection using YOLO: challenges, architectural successors, datasets and applications," Multimedia Tools and Applications, vol. 82, no. 6, pp. 9243-9275, Mar. 2023. DOI: 10.1007/s11042-022-13644-y 
  13. G. Jocher, A. Chaurasia, and J. Qiu, Ultralytics YOLO (Version 8.0.0), GitHub, Available: https://github.com/ultralytics/ultralytics 
  14. M. Pietropaoli et al., "Evaluation of two commonly used field tests to assess Varroa destructor infestation on honey bee (Apis mellifera) colonies," Applied Sciences, vol. 11, no. 10, p. 4458, May 2021. DOI: 10.3390/app11104458 
  15. Y. Kwon et al., "Proposal of an advanced YOLOX model for real-time detection of Vespa hornets (Hymenoptera; Vespidae), key pests of honey bees," Journal of Asia-Pacific Entomology, vol. 27, no. 2, p. 102234, Jun. 2024. DOI: 10.1016/j.aspen.2024.102234 
  16. H. J. Gwak, Y. J. Kwon, and C. H. Lee, "Comparison of Vespa detection accuracy for deep learning models according to training dataset," Journal of Apiculture, vol. 38, no. 3, pp. 223-232, Sep. 2023. DOI: 10.17519/apiculture.2023.09.38.3.223 
  17. S. K. Berkaya, E. S. Gunal, and S. Gunal, "Deep learning-based classification models for beehive monitoring," Ecological Informatics, vol. 64, p. 101353, Sep. 2021. DOI: 10.1016/j.ecoinf.2021.101353 
  18. The Open AI Dataset Project (AI-Hub, South Korea), Dataset information, AI-Hub. Available: https://aihub.or.kr/aihub-data/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=71488 
  19. S. Schurischuster and M. Kampel, VarroaDataset (1.2.0), Zenodo. Available: https://doi.org/10.5281/zenodo.4085044 
  20. I. Ahmad et al., "Deep learning based detector YOLOv5 for identifying insect pests," Applied Sciences, vol. 12, no. 19, p. 10167, Oct. 2022. DOI: 10.3390/app121910167 
  21. R. Bai et al., "Improving detection capabilities of YOLOv8-n for small objects in remote sensing imagery: towards better precision with simplified model complexity," Preprint, Jun. 2023. DOI: 10.21203/rs.3.rs-3085871/v1 
  22. J. Farooq, M. Muaz, K. K. Jadoon, N. Aafaq, and M. K. A. Khan, "An improved YOLOv8 for foreign object debris detection with optimized architecture for small objects," Multimedia Tools and Applications, vol. 83, no. 21, pp. 60921-60947, Jun. 2024. DOI: 10.1007/s11042-023-17838-w 
  23. F. M. Talaat and H. ZainEldin, "An improved fire detection approach based on YOLO-v8 for smart cities," Neural Computing and Applications, vol. 35, pp. 20939-20954, Oct. 2023. DOI: 10.1007/s00521-023-08809-1 
  24. H.-D. Lee, S.-G. Kim, S.-C Na, J.-Y. Ham, and C. Kwak, "A Study on Traffic Vulnerable Detection Using Object Detection-Based Ensemble and YOLOv5," Journal of the Korea Society of Computer and Information, vol. 29, no. 1, pp. 61-68, Jan. 2024. DOI: 10.9708/jksci.2024.29.01.06 
  25. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors," Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464-7475, Vancouver, BC, Canada, Jun. 2023. DOI: 10.1109/CVPR52729.2023.00721 
  26. G. Wang et al., "UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios," Sensors, vol. 23, no. 16, p. 7190, Aug. 2023. DOI: 10.3390/s23167190 
  27. R. Varghese and S. M., "YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness," Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), pp. 1-6, Chennai, India, May 2024. DOI: 10.1109/ADICS58448.2024.10533619 
  28. I. J. Jacob, S. Piramuthu, and P. Falkowski-Gilski, "Data Intelligence and Cognitive Informatics: Proceedings of ICDICI 2023," Springer Nature, 2024. 
  29. X. Zhang, F. Wan, C. Liu, X. Ji, and Q. Ye, "Learning to Match Anchors for Visual Object Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 6, pp. 3096-3109, Jun. 2022. DOI: 10.1109/TPAMI.2021.3050494 
  30. X. Zhai, Z. Huang, T. Li, H. Liu, and S. Wang, "YOLO-Drone: an optimized YOLOv8 network for tiny UAV object detection," Electronics, vol. 12, no. 17, p. 3664, Aug. 2023. DOI: 10.3390/electronics12173664 
  31. J. Moon, M. Bukhari, C. Kim, Y. Nam, M. Maqsood, and S. Rho, "Object detection under the lens of privacy: A critical survey of methods, challenges, and future directions," ICT Express, vol. 10, no. 5, pp. 1124-1144, Oct. 2024. DOI: 10.1016/j.icte.2024.07.005 
  32. B. Ali, M. Bukhari, M. Maqsood, J. Moon, E. Hwang, and S. Rho, "An end-to-end gait recognition system for covariate conditions using custom kernel CNN," Heliyon, vol. 10, no. 12, p. 32934, Jun. 2024. DOI: 10.1016/j.heliyon.2024.e32934 
  33. F. Ullah, J. Moon, H. Naeem, and S. Jabbar, "Explainable artificial intelligence approach in combating real-time surveillance of COVID19 pandemic from CT scan and X-ray images using ensemble model," The Journal of Supercomputing, vol. 78, pp. 19246-19271, Nov. 2022. DOI: 10.1007/s11227-022-04631-z 
  34. J. Oh, J. Lee, D. Kim, B.-Y. Kim, and J. Moon, "A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction," Journal of the Korea Society of Computer and Information, vol. 28, no. 11, pp. 29-42, Nov. 2023. DOI: 10.9708/jksci.2023.28.11.029 
  35. C. Kim, S. Jung, J. Moon, and H. Hwang, "Detecting Mode Drop and Collapse in GANs Using Simplified Frechet Distance," Journal of KIISE, vol. 46, no. 10, pp. 1012-1019, Oct. 2019, DOI: 10.5626/JOK.2019.46.10.1012.