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[Abstract]

The European honeybee (Apis mellifera) is an important pollinator threatened by colony collapse 

disorder (CCD), primarily due to infestation by the Varroa mite (Varroa destructor). Traditional 

detection methods are invasive and time-consuming, often causing additional stress to colonies. We 

propose a two-stage framework using the You Only Look Once version 8 (YOLOv8) model for 

non-destructive and rapid detection of Varroa mite infestation. The framework uses comb light images 

from inside the hives. In the first stage, a YOLOv8-n model detects bees and extracts individual bee 

images. In the second stage, a YOLOv8-cls model classifies the infestation status of each bee. Our 

object detection model achieved a mAP@0.5 of 0.701, and the classification model achieved an average 

accuracy of 91%. These results demonstrate the effectiveness of the framework as a non-destructive 

method for Varroa mite detection. Based on this research, we expect to provide beekeepers with an 

efficient tool for early detection and management of Varroa mite infestations, potentially reducing the 

incidence of CCD and supporting the sustainability of apiculture. 
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[요   약]

유럽 꿀벌(Apis mellifera)은 중요한 화분매개자로서 군집 붕괴 현상(CCD)으로 위협받고 있으며, 

이는 주로 바로아 응애(Varroa destructor) 감염에 기인한다. 기존의 감염 검사는 침습적이고 시간

이 많이 소요되어 벌통에 추가적인 스트레스를 준다. 본 논문에서는 YOLOv8 모델을 활용한 비파

괴적이고 신속한 바로아 응애 감염 검사를 위한 2단계 프레임워크를 제안한다. 프레임워크는 벌

통 내부에서 촬영한 소초광 이미지를 사용한다. 첫 번째 단계에서 YOLOv8-n 모델로 벌 객체를 

탐지하고 개별 벌 이미지를 추출한다. 두 번째 단계에서 YOLOv8-cls 모델로 각 벌의 감염 여부를 

판별한다. 제안한 모델은 객체 탐지에서 mAP@0.5 0.701, 감염 분류에서 평균 정확도 91%를 달성

하여 효과적인 비파괴적 검사 방법임을 입증한다. 본 연구를 바탕으로 양봉가들에게 바로아 응애 

감염의 조기 발견과 관리를 위한 효율적인 도구를 제공하여 CCD 발생을 감소시키고 양봉업의 지

속 가능성을 지원할 수 있을 것으로 기대한다. 

▸주제어: 소형 객체 탐지, 스마트 양봉, 군집 붕괴 현상, YOLOv8, 바로아 응애, 비파괴 검사

I. Introduction

Bees are the most economically valuable 

pollinators on Earth, playing a crucial role in 

maintaining biodiversity and supporting agricultural 

productivity [1]. Among them, the European honey 

bee (Apis mellifera) is found on every continent 

except Antarctica [2]. However, beekeepers 

worldwide are currently facing a serious challenge 

known as colony collapse disorder (CCD), in which 

entire colonies suddenly disappear [3]. While 

several factors contribute to CCD, pests and 

diseases have been identified as the most 

significant causes [4]. Notably, approximately 43% 

of CCD incidents in the United States from April 

2019 to April 2020 were attributed to infestations of 

the Varroa mite (Varroa destructor), a parasitic 

mite that is detrimental to bee populations [5].

Accurate and efficient detection of Varroa 

destructor infestations is essential for the timely 

management and preservation of bee colonies. 

Without timely intervention, these parasitic mites 

can rapidly multiply and devastate entire hives, 

exacerbating the global decline in bee populations 

[6]. Traditional detection methods, such as 

uncapping brood, sugar powder tests, and bottom 

board inspections, are not only time-consuming 

but also invasive, potentially adding stress to 

already vulnerable colonies [7]. These methods often 

require physical disturbance of the hive structure 

and the bees, which can disrupt their natural 

behaviors and increase the risk of harming the 

queen or brood [8]. As a result, there is an urgent 

need for non-destructive, rapid, and accurate 

diagnostic methods that allow beekeepers to 

effectively monitor and manage Varroa destructor

infestations without causing additional harm [9].

Advances in deep learning technologies have led 

to significant progress in computer vision, 

particularly in the processing and analysis of image 

data [10]. The You Only Look Once (YOLO) object 

detection algorithm has received considerable 

attention for its ability to quickly and accurately 

detect object locations and categories within images 

[11]. Unlike traditional object detection methods 

that repeatedly analyze multiple regions of an 

image, YOLO takes an innovative approach by 

making predictions over the entire image in a 

single pass through a neural network [12]. This 

efficiency makes YOLO highly suitable for real-time 

applications and has led to its integration with 

various technologies to solve diverse object 

detection challenges [13].

In this paper, we propose an accurate and 
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non-destructive two-stage framework for 

inspecting Varroa destructor infestation in apiaries 

using the YOLO algorithm. The proposed 

framework uses comb-light images captured from 

inside the hives. In the first stage, we input these 

images into a pre-trained YOLOv8-n model to 

detect individual bees and obtain bounding box 

coordinates for each bee. In the second stage, we 

pass the cropped images of individual bees through 

a pre-trained YOLOv8-cls model to classify the 

infestation status. This method allows efficient, 

non-destructive monitoring of bee colonies and 

helps beekeepers in early detection and 

management of infestations [14].

The rest of this paper is organized as follows: In 

Section II, we review related work on deep learning 

applications in insect detection and beehive 

monitoring. Section III details our proposed 

methodology, including the framework architecture, 

the image processing models, and the datasets 

used. Section IV presents the experimental results, 

comparing the performance of different YOLO 

models in the object detection stage and evaluating 

the classification accuracy in the infestation 

detection stage. Finally, Section V concludes the 

paper and discusses future research directions.

II. Related Work

Kwon et al. [15] proposed an improved structure 

of the YOLO version X (YOLOX) model to improve 

the accuracy of hornet detection. They replaced 

the cross-stage partial layer (CSPLayer) in each 

stage of the existing YOLOX backbone with a 

shuffle layer. This modification reduced the 

parameter size by approximately 91%, thereby 

increasing the processing speed. Experimental 

results showed that the proposed method achieved 

a mean average precision (mAP) of 87.35%, which 

is an increase of 1.114% compared to the standard 

YOLOX.

Gwak et al. [16] compared the accuracy of deep 

learning models for wasp detection based on 

different training datasets. The base dataset 

consisted of typical training images where objects 

occupy a large portion of the image. In addition, 

they created a training dataset to improve the 

detection performance for small objects. This 

dataset was modified so that the object area was 

0.3% of the total image area, similar to the 

proportion of wasps in real camera footage. 

Experimental results showed that the YOLO version 

7 (YOLOv7) model trained solely on the created 

dataset achieved the best mAP@0.5 of 95.4%.

Berkaya et al. [17] proposed a hive monitoring 

system to classify the state of bee colonies using 

deep learning technology. They trained their models 

using three datasets: a Varroa dataset, a bee image 

dataset, and a pollen-carrying dataset. They 

developed several deep learning-based classification 

models by extracting features from the image data 

using transfer-learned deep neural network (DNN) 

models and then classifying the extracted features 

using a support vector machine (SVM) model. The 

types of DNN models and the methods used for 

feature extraction are shown in Table 1. 

In their experiments, the transfer-learned Visual 

Geometry Group network 19 (VGGNet-19) model 

achieved the highest accuracy of 93.22% on the 

Varroa destructor dataset. On the bee image 

dataset, the SVM model using both deep and 

shallow features extracted from the GoogLeNet 

model achieved the highest accuracy of 98.2%. For 

the pollen-carrying dataset, the transfer-learned 

GoogLeNet model achieved the highest accuracy of 

99.07%. To avoid possible misunderstandings, it is 

important to note that for each DNN model listed in 

Table 1, multiple feature extraction methods were 

applied:

� Transfer learning only: The DNN model was 

used as is, with its pre-trained weights, to 

perform classification.

� Deep features: Features were extracted from 

the deeper layers of the DNN model and then 
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used as input to the SVM classifier.

� Shallow features: Features were extracted from 

the shallower layers of the DNN model and 

then used as input to the SVM classifier.

By experimenting with different combinations of 

DNN models and feature extraction methods, the 

researchers aimed to determine the most effective 

approach for classifying the state of bee colonies.

Model Feature Extraction Methods

AlexNet

Transfer learning only

Deep features

Shallow features

DenseNet-201

Transfer learning only

Deep features

Shallow features

GoogLeNet

Transfer learning only

Deep features

Shallow features

ResNet-101

Transfer learning only

Deep features

Shallow features

ResNet-18

Transfer learning only

Deep features

Shallow features

VGG-16

Transfer learning only

Deep features

Shallow features

VGG-19

Transfer learning only

Deep features

Shallow features

Table 1. Types of Deep Neural Network Models and 

Feature Extraction Methods

III. Datasets and Preprocessing

This section details the datasets employed in the 

development of the proposed framework and the 

preprocessing steps undertaken to prepare the data 

for modeling. Figure 1 provides an overview of the 

workflow, and this section elaborates on the 

preprocessing procedures.

1. Dataset Description

1.1 Bee Object Detection Dataset

To construct the bee object detection model, we 

used a publicly available dataset [18] of images 

taken inside honeycombs. The dataset contains 

images of bees at different life stages and from 

different subspecies, providing a diverse set of 

scenarios for model training. Specifically, we 

selected 2,500 images each of worker bees and 

queen bees of the species Apis mellifera. The 

images depict bees in their natural hive 

environment, providing realistic backgrounds and 

lighting conditions that enhance the robustness of 

the detection model.

1.2 Varroa Mite Infestation Classification Dataset

For the Varroa mite infestation classification 

model, we used a dataset [19] containing images of 

bees either infested with Varroa destructor mites or 

Fig. 1. Framework for Object Detection and Classification
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uninfested. The dataset consists of 10,000 images, 

evenly distributed between the two classes to avoid 

bias in the classification results. The images capture 

bees in a variety of positions and lighting conditions, 

reflecting real-world variability and enhancing the 

generalization capabilities of the model.

2. Data Preprocessing Methods

Data preprocessing is crucial to improving the 

quality of the input data and the performance of 

the models. The following preprocessing steps were 

applied to both datasets:

(1) Data Splitting: Each dataset was split into 

training and validation sets with a ratio of 

8:2. This split ensures that the models have 

enough data to learn while maintaining a 

separate set for unbiased performance 

evaluation.

(2) Image Augmentation: To increase the diversity 

of the training data and to avoid overfitting, 

several data augmentation techniques were 

applied:

� Random Flipping: Images were randomly flipped 

horizontally and/or vertically.

� Rotation: Images were rotated at random angles 

within a specified range.

� Scaling and Cropping: Randomly scaled and 

cropped images to simulate different distances 

and perspectives.

� Brightness and Contrast Adjustment: Random 

brightness and contrast changes were made to 

simulate different lighting conditions.

(3) Image Resizing: All images were resized to a 

fixed size suitable for input to the neural 

networks. For the YOLOv8 models, images 

were resized to 640 × 640 pixels while 

preserving the aspect ratio to avoid distortion.

(4) Normalization: Pixel values were normalized 

to have zero mean and unit variance. This 

step allows faster convergence during 

training and ensures numerical stability.

(5) Annotation Preparation: For the object 

recognition dataset, annotations in the form 

of bounding boxes and class labels were 

prepared in YOLO format. Each annotation 

contains the class label and the normalized 

coordinates of the bounding box.

IV. Proposed Method

In this section, we present the proposed two-step 

framework for non-destructive detection of Varroa 

destructor infestation in bee colonies. The 

framework integrates advanced image processing 

models to efficiently perform object detection and 

classification tasks.

1. Overview of the Framework

The proposed framework is designed to accurately 

detect varroa mite infestation using comb-light 

images captured from inside the hives, thereby 

minimizing disturbance to the colonies. As shown in 

Figure 2, the framework consists of two main stages.

Fig. 2. Overview of the Proposed Two-Stage Framework for 

Non-Destructive Detection of Varroa destructor Infestations

In the first stage, the goal is to detect and 

localize individual bees within the hive images. The 

input comb light images are fed into the YOLOv8-n 

object detection model, which outputs bounding 
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boxes and class probabilities for each detected bee, 

distinguishing between workers and queens. Based 

on the bounding box coordinates, the images are 

cropped to obtain individual bee images.

In the second stage, the goal is to classify each 

detected bee as infested or uninfested with a Varroa 

destructor. The cropped bee images from the first 

stage are fed into the YOLOv8-cls image classification 

model, which predicts the infestation status. The 

infestation labels for each bee can then be aggregated 

to assess the overall health of the colony.

This two-stage approach allows for focused analysis 

on individual bees, improving the accuracy of 

infestation detection while maintaining high processing 

speeds suitable for real-time monitoring [20].

2. Detailed Description of Image Processing 

Models

The framework leverages the capabilities of the 

YOLOv8 architecture for both object detection and 

image classification tasks. Using models from the 

same family ensures compatibility and efficiency in 

the processing pipeline.

2.1 YOLOv8-n Object Detection Model

The YOLOv8-n model is a lightweight yet 

powerful object detection network derived from the 

YOLO family [21]. Its architecture consists of three 

key components: the backbone network, the neck, 

and the detection head.

The backbone network serves as a feature 

extractor that captures visual patterns from the 

input images. It uses CSP networks to improve 

gradient flow and reduce computational complexity. 

The neck, implemented using the path aggregation 

network (PANet), combines feature maps from 

different scales, facilitating multi-scale object 

detection. The detection head predicts bounding 

boxes, objectness scores, and class probabilities.

One of the notable features of YOLOv8-n is the 

adoption of an anchor-free detection approach. 

Eliminating the need for predefined anchor boxes 

simplifies model design and improves detection 

performance, especially for small objects such as 

bees [22].

To train the YOLOv8-n model, we used a 

combination of loss functions, including localization 

loss (e.g., Intersection over Union [IoU] loss), 

objectness loss (e.g., binary cross-entropy), and 

classification loss (e.g., focal loss). The Adam 

optimizer with a learning rate scheduler allowed for 

efficient convergence. Hyperparameters such as 

batch size and learning rate were fine-tuned 

through cross-validation to optimize performance.

The YOLOv8-n model balances accuracy and 

speed, making it suitable for use on devices with 

limited computing resources. Its ability to perform 

real-time detection is critical for continuous 

monitoring applications [23].

2.2 YOLOv8-cls Image Classification Model

The YOLOv8-cls model is designed for image 

classification tasks and shares the backbone network 

architecture with YOLOv8-n. This consistency allows 

for seamless integration between the detection and 

classification stages. The model includes 

convolutional layers for hierarchical feature 

extraction, global pooling layers to aggregate feature 

maps into fixed-length representations, and fully 

connected layers to perform classification based on 

the extracted features.

Transfer learning was used to improve model 

performance and reduce training time. The model 

was initialized with weights pre-trained on large 

image datasets such as ImageNet. It was then 

fine-tuned on the varroa mite infestation dataset, 

allowing it to adapt to the specific characteristics of 

the task. For the classification task, cross-entropy 

loss was used for binary classification (infested vs. 

uninfested). The Adam optimizer was used with 

appropriate regularization techniques to avoid 

overfitting. Data augmentation techniques similar to 

those used in the object detection stage were 

applied to improve generalization.

Given the small size and subtle appearance of 

varroa mites on bees, high-resolution images and 
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careful preprocessing were essential. The model 

focuses on learning discriminative features that 

distinguish infested bees from healthy ones, such as 

the presence of mites on the bee's body. By using 

models from the same architecture family, the output 

of the YOLOv8-n detection model, cropped bee 

images, is directly compatible with the YOLOv8-cls 

classification model. This compatibility streamlines 

the processing pipeline and reduces overhead, 

increasing the overall efficiency of the framework.

V. Experiments

In this section, we evaluate the performance of 

the proposed two-stage framework through a series 

of experiments. The goal is to assess the accuracy 

and effectiveness of the YOLOv8 models in 

detecting bee objects and classifying varroa mite 

infestation. We also compare YOLOv8 with previous 

versions, namely YOLOv5 and YOLOv7, to 

understand how the advancements in YOLOv8 

contribute to improved results.

1. Object Detection Stage

To accurately detect bee objects in hive images, 

we compared the predictive performance of three 

versions of the YOLO model: YOLOv5, YOLOv7, and 

YOLOv8. These models represent successive 

advancements in the YOLO series, each introducing 

improvements in architecture and performance.

1.1 Overview of YOLOv5, YOLOv7, and YOLOv8

YOLOv5 is an object detection model that builds on 

the YOLO family and introduces improvements in speed 

and accuracy over its predecessors. It includes a focus 

module and uses advanced data augmentation 

techniques such as mosaic and self-adversarial 

training to improve performance [24].

YOLOv7 further improves on YOLOv5 by 

introducing extended efficient layer aggregation 

networks (E-ELANs), which improve the ability to 

learn features without increasing computational 

cost. It also integrates model re-parameterization 

techniques to optimize the architecture for both the 

training and inference phases [25].

YOLOv8, the latest in the series, introduces 

several significant enhancements:

� Anchorless Recognition: YOLOv8 takes an 

anchor-free approach, eliminating the need for 

predefined anchor boxes. This simplifies the 

model and reduces localization errors, especially 

when detecting small objects such as bees [26].

� Improved Backbone and Neck: Uses a new backbone 

mesh with improved feature extraction capabilities 

and an efficient neck component for better feature 

fusion [27].

� Advanced Training Strategies: YOLOv8 incorporates 

improved loss functions and optimization 

techniques, resulting in better convergence and 

accuracy [28].

1.2 Experimental Setup

� Dataset: The bee object detection dataset 

described in Section 3.1.1 was used for 

training and evaluation.

� Evaluation Metrics: Models were assessed using 

accuracy for each class (worker and queen 

bees), average precision (AP) for each class, 

and mAP at an IoU threshold of 0.5 (mAP@0.5).

� Training Parameters: Each model was trained 

under similar conditions to ensure a fair 

comparison. Hyperparameters such as learning 

rate, batch size, and number of epochs were 

optimized for each model through 

cross-validation.

1.3 Results and Analysis

The predictive performance of each model is 

summarized in Table 2.

Model
Accuracy (%) Average Precision (AP)

mAP@0.5
Worker Queen Worker Queen

YOLOv5 98 32 0.548 0.799 0.673

YOLOv7 76 30 0.459 0.374 0.416

YOLOv8 96 48 0.602 0.807 0.705

Table 2. Performance Comparison of YOLO Models 

for Bee Object Detection
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From the results in Table 2, we can see that:

� YOLOv5 achieved high accuracy in detecting 

worker bees (98%), but showed lower accuracy 

for queen bees (32%). Its mAP@0.5 was 0.673.

� YOLOv7 had lower accuracy for both worker 

bees (76%) and queen bees (30%) compared to 

YOLOv5 and YOLOv8, with a mAP@0.5 of 0.416.

� YOLOv8 outperformed the other models in most 

metrics, achieving accuracies of 96% for 

worker bees and 48% for queen bees and a 

mAP@0.5 of 0.705.

The improved performance of YOLOv8 is due to 

several factors:

� Anchorless Detection: YOLOv8's anchor-free 

approach simplifies the detection process and 

reduces errors associated with anchor box 

dimensions, improving performance when 

detecting small and irregularly shaped objects 

such as bees [29].

� Improved Feature Extraction: YOLOv8's 

improved backbone and neck architectures 

allow for better feature aggregation and 

fusion, resulting in more accurate object 

localization and classification [30].

� Advanced Training Techniques: YOLOv8 

incorporates optimized loss functions and 

training strategies that improve convergence 

and generalization, contributing to higher 

accuracy.

While YOLOv5 demonstrated high accuracy for 

worker bees, it struggled with queen bee detection. 

This may be due to its reliance on anchor boxes, 

which can be less effective for objects of varying 

sizes and shapes. YOLOv7 did not perform as well 

in our specific application, possibly due to 

overfitting or inadequate adaptation to the 

characteristics of our dataset.

The lower accuracy in detecting queen bees 

across all models highlights a challenge in our 

dataset and task. Queen bees have distinct 

morphological features and are less represented in 

the dataset compared to worker bees. Expanding 

the dataset with more images of queen bees and 

using data augmentation techniques focused on 

queen bee characteristics may improve detection 

accuracy in future work [31].

Accurate detection of worker bees is critical to 

our framework, as they make up the majority of 

the colony and are the primary subjects for 

infestation assessment. YOLOv8's high accuracy in 

detecting worker bees ensures the reliability of the 

subsequent classification stage.

2. Classification Stage

In the second stage, we evaluated the 

performance of the varroa mite infestation 

classification model using the cropped bee images 

obtained from the object detection stage.

2.1 Experimental Setup

� Dataset: The varroa mite infestation classification 

dataset described in Section II was used for training 

and evaluation.

� Evaluation Metrics: The performance of the model 

was evaluated using the accuracy for each class 

(infested and uninfested) and the overall average 

accuracy.

� Training Parameters: The YOLOv8-cls model was 

fine-tuned using transfer learning as described 

in Section 3.1.2. Hyperparameters were optimized 

to maximize classification accuracy.

2.2 Results and Analysis

The classification model shows significant 

variance in performance based on infestation 

status, as detailed in Table 3. The model is highly 

effective, with an accuracy of 99% for detecting 

infested bees while achieving an accuracy of 87% 

for identifying uninfested bees. This indicates the 

increased sensitivity of the model to the specific 

markers of infestation.
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Model Accuracy (%)

GoogLeNet 89

ResNet50 92

YOLOv8-cls 93

Table 3. Detailed Performance Metrics of the 

Classification Model 

This difference in accuracy highlights the need 

for model refinement to improve reliability. The 

lower accuracy in detecting uninfested bees 

suggests that improvements are needed to ensure 

balanced performance across detection scenarios. 

These results direct future research toward 

improving model consistency and confirm the 

utility of convolutional neural networks in pest 

detection applications [32, 33].

The high accuracy in detecting infested bees 

indicates the effectiveness of the model in 

identifying the subtle visual cues associated with 

Varroa destructor infestations. The slightly lower 

accuracy for uninfested bees may be due to false 

positives, where uninfested bees are mistakenly 

classified as infested. This could be due to visual 

similarities or occlusions in the images.

To improve classification performance, especially 

for uninfested bees, future work could focus on:

� Improving Image Quality: Using higher resolution 

images or improving image preprocessing to 

better capture discriminative features.

� Expanding the Dataset: Enhancing the diversity 

of the dataset through generative model-based 

data augmentation to improve model 

generalization [31].

� Advanced Feature Extraction: Explore more 

sophisticated feature extraction methods or 

ensemble models to capture nuanced 

differences [34].

� Ensuring Data Quality: Detecting mode drop and 

collapse in generative models using techniques to 

maintain data diversity and quality, thereby 

improving overall model performance [35].

3. Discussion

The experimental results confirm the effectiveness 

of the proposed two-stage framework. The YOLOv8 

models showed superior performance in both 

detection and classification tasks compared to 

previous versions.

The main findings are as follows:

� Advantages of YOLOv8: The architectural and 

methodological advances in YOLOv8 contribute 

significantly to its improved performance, 

making it well suited for our application.

� Effectiveness of the framework: The high 

accuracy achieved in both phases suggests 

that the framework can reliably detect Varroa 

destructor infestations non-destructively, 

providing a practical tool for beekeepers.

Despite the promising results, there are some 

limitations:

� Queen Bee Detection: The lower detection 

accuracy for queen bees indicates the need 

for more focused training in this class.

� Dataset Diversity: Expanding the dataset to 

include more variations in bee appearance, 

hive conditions, and environmental factors 

may improve model robustness.

� Real-World Deployment: Testing the framework 

in operational apiaries will provide insight into 

its practical utility and areas for improvement.

The experiments show that the proposed 

framework, leveraging the strengths of YOLOv8, 

achieves high accuracy in bee detection and varroa 

mite infestation classification. These results support 

the potential of the framework as a non-destructive, 

efficient solution for colony health monitoring.

VI. Conclusions

In this paper, we proposed a two-stage 

YOLOv8-based framework for non-destructive 

detection of Varroa destructor infestation in bee 

colonies, contributing to the advancement of 
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technology for smart beekeeping practices. The 

framework used comb-light images captured from 

inside the hives, minimizing disturbance to the bees 

and enabling efficient monitoring.

In the first stage, we used a pre-trained 

YOLOv8-n object detection model to identify and 

localize individual bees within the hive images. This 

model achieved a mAP@0.50 of 0.705, demonstrating 

its effectiveness in accurately detecting bee objects. 

By obtaining the bounding box coordinates, we were 

able to crop the images to focus on individual bees, 

providing high-quality input for the classification 

stage.

In the second stage, we used a pre-trained 

YOLOv8-cls image classification model to determine 

the infestation status of each bee. The model 

achieved an average accuracy of 93%, indicating a 

high degree of reliability in classifying bees as 

infested or uninfested with Varroa destructor. By 

aggregating the classification results of individual 

bees, the overall health of the colony can be 

assessed, allowing for timely intervention.

Traditional methods for detecting Varroa 

destructor infestations are often destructive and 

time-consuming, involving invasive inspections that 

can stress bees and disrupt hive activities. The 

proposed framework can provide a non-destructive 

and rapid alternative, allowing beekeepers to 

efficiently monitor infestation levels without 

causing additional harm to colonies.

For future research, we plan to explore more 

robust algorithms specifically tailored for detecting 

small objects such as varroa mites. This may 

involve integrating advanced image enhancement 

techniques or leveraging newer deep learning 

architectures to further improve detection and 

classification accuracy. By refining the proposed 

method, we aim to contribute to more effective and 

sustainable beekeeping practices, ultimately 

supporting the health and productivity of bee 

populations essential to global biodiversity and 

agriculture.
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