DOI QR코드

DOI QR Code

Influence of Layer Thickness and Build Angle on the Flexural Strength and Surface Roughness of Repaired 3D-Printed Denture Base Resin

적층 두께 및 출력 각도가 수리된 3D 프린팅 의치상 레진의 굴곡강도와 표면 거칠기에 미치는 영향

  • Jae-Won Choi (Dept. of Dental Laboratory Science, College of Health Science, Catholic University of Pusan)
  • 최재원 (부산가톨릭대학교 치기공학과)
  • Received : 2024.08.25
  • Accepted : 2024.10.02
  • Published : 2024.10.31

Abstract

The purpose of this study was to evaluate the effects of various layer thicknesses and build angles on the flexural strength and surface roughness of repaired 3D-printed denture base resin. 3D-printed bar-shaped specimens with a 45° bevel were fabricated according to layer thickness(50 ㎛ and 100 ㎛) and build angle(0-degree, 45-degree, and 90-degree). Denture relining resin was applied to the 2 mm repair area Flexural strength was measured by a three-point bending test using a universal testing machine, and surface roughness(Ra) and surface topography were observed using a digital optical microscope at ×500 magnification. Statistical significance was analyzed using two-way ANOVA, one-way ANOVA, and Games-Howell post hoc(α = .05). Except for the 90-degree group, the group with a layer thickness of 100 ㎛ showed better flexural strength values than the group with a layer thickness of 50 ㎛(p < .05). Additionally, within the same layer thickness, the 45-degree group showed the lowest flexural strength value. The Ra values of the 0-degree and 90-degree groups, where the build angle was 45° to the layer orientation, were higher at 100 ㎛ than at 5 0 ㎛ layer thickness(p < .05), and the Ra value of the 45-degree group, where the build angle was parallel to the layer orientation, was lower than those of other build angles(p < .05). Layer thickness and build angle significantly affected the surface roughness of 3D-printed denture base resin, and the surface roughness was confirmed to be closely related to the bonding strength with denture relining resin.

Keywords

References

  1. Cakmak, G., Asadolahi, N. W., Schimmel, M., Molinero-Mourelle, P., Akay, C., Donmez, M. B., Yilmaz, B., Effect of coffee thermal cycling on the surface properties and stainability of additively manufactured denture base resins in different layer thicknesses, J. Prosthodont., Online ahead of print, (2023).
  2. Lee, W-J., Jo, Y-H., Yilmaz, B., Yoon, H-I., Effect of layer thickness, build angle, and viscosity on the mechanical properties and manufacturing trueness of denture base resin for digital light processing, J. Dent., 135: 104598, (2023).
  3. Alqanas, S. S., Alfuhaid, R. A., Alghamdi, S. F., Al-Qarni, F. D., Gad, M. M., Effect of denture cleansers on the surface properties and color stability of 3D printed denture base materials, J. Dent., 120:104089, (2022).
  4. Lee, W-J., Jo, Y-H., Yilmaz, B., Yoon, H-I., Effect of build angle, resin layer thickness and viscosity on the surface properties and microbial adhesion of denture bases manufactured using digital light processing, J. Dent., 137: 104608, (2022).
  5. Alharethi, N. A., Evaluation of the Influence of Build Orientation on the Surface Roughness and Flexural Strength of 3D-Printed Denture Base Resin and Its Comparison with CAD-CAM Milled Denture Base Resin, Eur. J. Dent., 18:1 p.321-328, (2024).
  6. Gad, M. M., Abualsaud, R., Effect of repair and surface treatments on the strength of digitally fabricated resin-based dental prostheses: A systematic review of in vitro studies, J. Dent., 141:104806, (2024).
  7. Kim, H-B., Choi, J-W., Effect of Washing Solvent and Washing Method on Flexural Strength of 3D-Printed Temporary Resin Material, KSIC, 27:2 p.389-395, (2024).
  8. Al-Dulaijan, Y. A., Alsulaimi, L., Alotaibi, R., Alboainain, A., Alalawi, H., Alshehri, S., Khan, S. Q., Alsaloum, M., AlRumaih, H. S., Alhumaidan, A. A., Gad, M. M., Comparative Evaluation of Surface Roughness and Hardness of 3D Printed Resins, Materials (Basel), 15:19 p.6822, (2022).
  9. Puebla, K., Arcaute, K., Quintana, R., Wicker, R. B., Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography, Rapid Prototyp. J., 18:5 p.374-388, (2012).
  10. Arnold, C., Monsees, D., Hey, J., Schweyen, R., Surface Quality of 3D-Printed Models as a Function of Various Printing Parameters, Materials (Basel), 19:12 p.1970, (2019).
  11. Li, P., Fernandez, P. K., Spintzyk, S., Schmidt, F., Yassine, J., Beuer, F., Unkovskiy, A., Effects of layer thickness and build angle on the microbial adhesion of denture base polymers manufactured by digital light processing, J. Prosthodont. Res., 67:4 p.562-567, (2023).
  12. Pereira, A. L. C., Troconis, C. C. M., Curinga, M. R. S., Curinga, M. A. S. E., Barao, V. A. R., Carreiro, A. da F. P., Bond strength between denture lining material and CAD-CAM denture base resin: A systematic review and meta-analysis, J. Prosthet. Dent., S0022-3913:23 p.00607-8, (2023).
  13. Pisani, M. X., Malheiros-Segundo, A. L., Balbino, K. L., de Souza, R. F., Paranhos, H. F. O., da Silva, C. H. L., Oral health related quality of life of edentulous patients after denture relining with a silicone-based soft liner, Gerodontology, 29:2 p.e474-e480, (2012).
  14. Sonego, M. V., Neto, C. L. M. M., dos Santos, D. M., Moreno, A. L. M., Bertoz, A. P. M., Goiato, M. C., Quality of Life, Satisfaction, Occlusal Force, and Halitosis after Direct and Indirect Relining of Inferior Complete Dentures, Eur. J. Dent., 16:1 p.215-222, (2022).
  15. Choi, J. E., Ng, T. E., Leong, C. K. Y., Kim, H., Li, P., Waddell, J. N., Adhesive evaluation of three types of resilient denture liners bonded to heat-polymerized, autopolymerized, or CAD-CAM acrylic resin denture bases, J. Prosthet. Dent., 120:5 p.699-705, (2018).
  16. Fatemi, F. S., Vojdani, M., Khaledi, A. A. R., The Effect of Food-Simulating Agents on the Bond Strength of Hard Chairside Reline Materials to Denture Base Resin, J. Prosthodont., 28:1 p.e357-e363, (2019).
  17. Viotto, H. E. do C., Silva, M. D. D., Nunes, T. S. B. S., Coelho, S. R. G., Pero, A. C., Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin, J. Adv. Prosthodont., 14:5 p.305-314, (2022).
  18. Asli, H. N., Rahimabadi, S., Hemmati, Y. B., Falahchai, M., Effect of different surface treatments on surface roughness and flexural strength of repaired 3D-printed denture base: An in vitro study, J. Prosthet. Dent., 126:4 p.595.e1-595.e8, (2021).
  19. Gad, M. M., Albazroun, Z., Aldajani, F., Elakel, A. M., El Zayat, M., Akhtar, S., Khan, S. Q., Ali, S., Rahoma, A. M., Repair Bond Strength of Conventionally and Digitally Fabricated Denture Base Resins to Auto-Polymerized Acrylic Resin: Surface Treatment Effects In Vitro, Materials (Basel), 15:24 p.9062, (2022).
  20. Li, P., Kramer-Fernandez, P., Klink, A., Xu, Y., Spintzyk, S., Repairability of a 3D printed denture base polymer: Effects of surface treatment and artificial aging on the shear bond strength, J. Mech. Behav. Biomed. Mater., 114:104227, (2021).
  21. Awad, A. N., Cho, S-H., Kesterke, M. J., Chen, J-H., Comparison of tensile bond strength of denture reline materials on denture bases fabricated with CAD-CAM technology, J. Prosthet. Dent., 129:4 p.616-622, (2023).
  22. Wemken, G., Burkhardt, F., Spies, B. C., Kleinvogel, L., Adali, U., Sterzenbach, G., Beuer, F., Wesemann, C., Bond strength of conventional, subtractive, and additive manufactured denture bases to soft and hard relining materials, Dent. Mater., 37:5 p.928-938, (2021).
  23. Koseoglu, M., Tugut, F., Akin, H., Tensile bond strength of soft and hard relining materials to conventional and additively manufactured denture-base materials, J. Prosthodont., 32:S1 p.74-80, (2023).
  24. Gad, M. M., Rahoma, A., Abualsaud, R., Al-Thobity, A. M., Akhtar, S., Helal, M. A., Al-Harbi, F. A., Impact of different surface treatments and repair material reinforcement on the flexural strength of repaired PMMA denture base material, Dent. Mater., J., 39:3 p.471-482, (2020)