Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A3072357).
References
- Ali, H., Mahmood, I., Ali, M.F., Waheed, A., Jawad, H., Hussain, S., Abasi, F., Zulfiqar, U., Siddiqui, M.H. and Alamri, S. 2024. Individual and interactive effects of amino acid and paracetamol on growth, physiological and biochemical aspects of Brassica napus L. under drought conditions. Heliyon. 10(11). doi:10.1016/j.heliyon.2024.e31544
- Azhar, M.T. and Rehman, A. 2018. Overview on effects of water stress on cotton plants and productivity. Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. pp. 297-316. doi:10.1016/B978-0-12-813066-7.00016-4
- Banerjee, A. and Roychoudhury, A. 2021. Roles of hydrogen sulfide in regulating temperature stress response in plants. In: Plant growth regulators: signalling under stress conditions. Springer international publishing. pp. 207-215. doi:10.1007/978-3-030-61153-8_10.
- Bilibio, C., Carvalho, J.D.A., Hensel, O. and Richter, U. 2011. Effect of different levels of water deficit on rapeseed (Brassica napus L.) crop. Ciencia e Agrotecnologia. 35:672-684.
- Guo, L., Ling, L., Wang, X., Cheng, T., Wang, H. and Ruan, Y. 2023. Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism. BMC Plant Biology. 23(1):73. doi:10.1186/s12870-023-04089-y
- Hasan, H., Uzma, Gul, A., Kubra, G., tuz Zahra Khan, F., Yousaf, S., Ajmal, K. B., Naseer, H., Khan, W., Amir, R., Ali, M. and Keyani, R. 2020. Role of osmoprotectants and drought tolerance in wheat. In: Climate change and food security with emphasis on wheat, Elsevier. pp. 207-216. doi:10.1016/B978-0-12-819527-7.00013-3
- Hasanuzzaman, M. and Fujita, M. 2022. Plant oxidative stress: Biology, physiology and mitigation. Plants. 11(9):1185. doi:10.3390/plants11091185
- Hodges, D.M., DeLong, J.M., Forney, C.F. and Prange, R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207:604-611.
- Hopkins, A., & Del Prado, A. (2007). Implications of climate change for grassland and livestock production. Grass and Forage Science. 62(2):118-126.
- Julia, G., Nathalia, B., Rosangela, M., Andrea, H., Douglas, D., Joao, B. and Luiz, V. 2014. Stress-induced ∆1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiologiae Plantarum. 36:2309-2319.
- Kavi Kishor, P.B. and Sreenivasulu, N. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell, and Environment. 37(2):300-311. doi:10.1111/pce.12157
- Kirkegaard, J.A., Lilley, J.M., Berry, P.M. and Rondanini, D.P. 2021. Canola, in: Crop Physiology Case Histories for Major Crops. Elsevier, pp. 518-549. doi:10.1016/B978-0-12-819194-1.00017-7
- Kour, D., Rana, K.L., Yadav, A.N., Sheikh, I., Kumar, V., Dhaliwal, H.S., et al. 2020. Amelioration of drought stress in foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth-promoting attributes. Journal of Environmental Sustainability. 3(1):23-34.
- La, V.H., Lee, B.R., Islam, M.T., Mamun, M.A., Park, S.H., Bae, D.W. and Kim, T.H. 2020. Characterization of glutamate-mediated hormonal regulatory pathway of the drought responses in relation to proline metabolism in Brassica napus L. Plants. 9(4):512.
- La, V.H., Lee, B.R., Islam, M.T., Park, S.H., Jung, H.I., Bae, D.W., et al. 2019a. Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environmental and Experimental Botany. 157:1-10.
- Lai, D.W., Mao, Y., Zhou, H., Li, F., Wu, M.Z., Zhang, J., He, Z.Y., Cui, W.T. and Xie, Y.J. 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the re-establishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science. 225:117-129.
- Lee, B.R., Jin, Y.L., Avice, J.C., Cliquet, J.B., Ourry, A. and Kim, T.H. 2009. Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytologist. 182(3):654-663.
- Lee, B.R., La, V.H., Park, S.H., Mamun, M.A., Bae, D.W. and Kim, T.H. 2022. H2O2-responsive hormonal status involves oxidative burst signaling and proline metabolism in rapeseed leaves. Antioxidants. 11(3):566.
- Lee, B.R., Muneer, S., Park, S.H., Zhang, Q. and Kim, T.H. 2013. Ammonium-induced proline and sucrose accumulation, and their significane in antioxidative activity and osmotic adjustment. Acta Physiologiae Plantarum. 35:2655-2664.
- Lee, B.R., Park, S.H., Muchlas, M., La, V.H., Mamun, M.A., Bae, D.W. and Kim, T.H. 2023. Differential response of phenylpropanoid pathway as linked to hormonal change in two Brassica napus cultivars contrasting drought tolerance. Physiologia Plantarum. 175(6):14115.
- Lisjak, M., Teklica, T., Wilson, I., Wood, M.E., Whiteman, M., Spol-jarevic, M. and Hancock, J.T. 2013. The role of H2S in pepper leaves under salt stress conditions. Nitric Oxide Biology and Chemistry. 6:42.
- Morales, M. and Munne-Bosch, S. 2019. Malondialdehyde: Facts and artifacts. Plant Physiology. 180(3):1246-1250. doi:10.1104/pp.19.00405
- Park, S.H., Lee, B.R., La, V.H., Mamun, M.A., Bae, D.W. and Kim, T.H. 2021. Characterization of salicylic acid- and abscisic acid-mediated photosynthesis, Ca2+ and H2O2 accumulation in two distinct phases of drought stress intensity in Brassica napus. Environmental and Experimental Botany. 186:104434.
- Rehman, A.U., Bashir, F., Ayaydin, F., Kota, Z., Pali, T. and Vass, I. 2021. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiologia Plantarum. 172:7-18.
- Rejeb, K., Abdelly, C. and Savoure, A. 2014. How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry. 80:278-284. doi:10.1016/j.plaphy.2014.04.007
- Rhaman, M.S., Rauf, F., Tania, S.S., Bayazid, N., Tahjib-ul-Arif, M., Robin, A.H.K., Hoque, M.A., Yang, X., Murata, Y. and Brestic, M. 2024. Proline and glycine betaine: A dynamic duo for enhancing salt stress resilience in maize by regulating growth, stomatal size, and oxidative stress responses. Plant Stress. 14:100563. doi:10.1016/j.stress.2024.100563
- Richardson, A.D., Duigan, S.P. and Berlyn, G.P. 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist. 153(1):185-194. doi:10.1046/j.0028-646X.2001.00289.x
- Salehi-Lisar, S.Y. and Bakhshayeshan-Agdam, H. 2016. Drought stress in plants: Causes, consequences, and tolerance. In: M. Hossain, S. Wani, S. Bhattacharjee, D. Burritt, L.S. Tran (Eds.), Drought stress tolerance in plants. Vol 1. Springer. Cham. doi:10.1007/978-3-319-28899-4_1
- Szabados, L. and Savoure, A. 2010. Proline: A multifunctional amino acid. Trends in Plant Science. 15:89-97.
- Yang, D., Ni, R., Yang, S., Pu, Y., Qian, M., Yang, Y. and Yang, Y. 2021b. Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions. International Journal of Molecular Sciences. 22(17):9599.
- Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z. and Chen, S. 2021a. Response mechanism of plants to drought stress. Horticulturae. 7(3):50.