DOI QR코드

DOI QR Code

NAC Transcription Factor ANAC032 Negatively Regulates Abscisic Acid and Sugar Responses

  • Netty Ermawati (Department of Agricultural Production and Central Laboratory for Biosciences, State Polytechnic of Jember) ;
  • Ade Citra Aulia (Dvision of Applied Life Science (BK21 four), Research Institute of Life Sciences, Gyeongsang National University) ;
  • Daeyoung Son (Department of Plant Medicine, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Joon-Yung Cha (Dvision of Applied Life Science (BK21 four), Research Institute of Life Sciences, Gyeongsang National University)
  • Received : 2024.09.11
  • Accepted : 2024.09.26
  • Published : 2024.09.30

Abstract

This study investigates the role of the NAC transcription factor ANAC032 in regulating abscisic acid (ABA)-dependent stress responses and its involvement in sugar signaling pathways. Arabidopsis seedlings with overexpressed or knock-out ANAC032 were examined for their sensitivity to ABA, glucose, and fluridone to elucidate the functional role of ANAC032 in ABA and high glucose-mediated growth retardation. Our results showed that ANAC032 negatively regulates ABA responses, as ANAC-overexpressing plants exhibited higher ABA sensitivity, while anac032 mutants were less sensitive. Under high glucose conditions, anac032 mutants demonstrated hyposensitivity, with germination rates higher than wild-type and ANAC032-overexpressing plants. Additionally, yeast two-hybrid screening identified three NAC proteins, ANAC020, ANAC064, and ANAC074, interact with ANAC032. These findings highlight ANAC032's role in stress signaling pathways and its potential interactions with other NAC proteins, contributing to a better understanding of transcriptional regulation in plant stress responses and possibly expanding to forage crop development.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MOE-2022R1I1A1A01070257), Republic of Korea.

References

  1. Ali, F., Qanmber, G., Li, F. and Wang, Z. 2022. Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research. 35:199-214. doi:10.1016/j.jare.2021.03.011
  2. Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J. and Leon, P. 2000. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes & Development. 14:2085-2096. doi:10.1101/gad.14.16.2085
  3. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology. 24:1-15. doi:10.1104/pp.24.1.1
  4. Bu, Q., Jiang, H., Li, C.B., Zhang, J., Wu, X., Sun, J., Xie, Q. and Li, C. 2008. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research. 18:756-767. doi:10.1038/cr.2008.53
  5. Dekkers, B.J.W., Schuurmans, J.A.M.J. and Smeekens, S.C.M. 2004. Glucose delays seed germination in Arabidopsis thaliana. Planta. 218:579-588. doi:10.1007/s00425-003-1154-9.
  6. Dekkers, B.J.W., Schuurmans, J.A.M.J. and Smeekens, S.C.M. 2008. Interaction between sugar and abscisic acid signaling during early seedling development in Arabidopsis. Plant Molecular Biology. 67:151-167. doi:10.1007/s11103-008-9308-6.
  7. Duval, M., Hsieh, T., Kim, S.Y. and Thomas, T.L. 2002. Molecular characterization of AtNAM: A member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology. 50:237-248. doi:10.1023/A:1016028530943
  8. Ermawati, N., Hong, J.C., Son, D. and Cha, J.Y. 2021. Isolation of multi-abiotic stress response genes to generate global warming defense forage crops. Journal of the Korean Society of Grassland and Forage Science. 41(4):242-249. doi:10.5333/KGFS.2021.41.4.242
  9. Ermawati, N., Kim, S.G., Cha, J.Y. and Son. D. 2023. Arabidopsis transcription factor ANAC032 enhances salinity and drought tolerance. Journal of the Korean Society of Grassland and Forage Science. 43(1):42-49. doi:10.5333/KGFS.2023.43.1.42
  10. Finkelstein, R.R. 1994. Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant Journal. 5(6):765-771. doi:10.1046/j.1365-313X.1994.5060765.x
  11. Finkelstein, R.R. and Gibson, S.I. 2002. ABA and sugar interactions regulating development: Cross-talk or voice in a crowd? Current Opinion in Plant Biology. 5(1):26-32. doi:10.1016/S1369-5266(01)00225-4
  12. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S., Shinozaki, K.Y. and Shinozaki, K. 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal. 39:863-876. doi:10.1111/j.1365-313x.2004.02171.x
  13. Hart, E.H., Christofides, S.R., Davies, T.E., Stevens, P.R., Creevey, C.J., Muller, C.T., Rogers, H.J. and Kingston-Smith, A.H. 2022. Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency. Scientific Reports. 12:4454. doi:10.1038/s41598-022-21958-y
  14. Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A,, Parkin, I., Whitwill, S. and Lydiate, D. 2003. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology. 53:383-397. doi:10.1023/B:PLAN.0000006944.61384.11
  15. Jang, J.C., Leon, P., Zhou, L. and Sheen, J. 1997. Hexokinase as a sugar sensor in higher plants. Plant Cell. 9:5-19. doi:10.1105/tpc.9.1.5
  16. Jensen, M.K., Hagedorn, P.H., Torres-Zabala, M., Grant, M.R., Rung, J.H., Collinge, D.B. and Lyngkjaer, M.F. 2008. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signaling for efficient basal defense towards Blumeria graminis f. sp hordei in Arabidopsis. The Plant Journal. 56:867-880. doi:10.1111/j.1365-313X.2008.03646.x
  17. Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology. 49:199-222. doi:10.1146/annurev.arplant.49.1.199
  18. Lin, P.C., Hwang, S.G., Endo, A., Okamoto, M., Koshiba, T. and Cheng, W.H. 2007. Ectopic expression of ABSCISIC ADIC 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiology. 143:745-758. doi:10.1104/pp.106.084103
  19. Lu, P.L., Chen, N.Z., An, R., Su, Z., Qi, B.S., Ren, F., Chen, J. and Wang, X.C. 2007. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Molecular Biology. 63:289-305. doi:10.1007/s11103-006-9089-8
  20. Mahmood, K., El-kereamy, A., Kim, S.H., Nambara, E. and Rothstein, S.J. 2016a. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana. Plant Cell Physiology. 57(10):2029-2046. doi:10.1093/pcp/pcw120
  21. Mahmood, K., Xu, Z., El-Kereamy, A., Casaretto, J. and Rothstein S.J. 2016b. The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses. Frontiers in Plant Science. 7:1548. doi:10.3389/fpls.2016.01548
  22. Maki, H., Sakaoka, S., Itaya, T., Suzuki T., Mabuchi, K., Amabe, T., Suzuki, N., Higashiyama, T., Tada, Y., Nakagawa, T., Morikami A. and Tsukagoshi, H. 2019. ANAC032 regulates root growth through the MYB30 gene regulatory network. Scientific Reports. 9:11358. doi:10.1038/s41598-019-478220-0
  23. Olsen, A.N., Ernst, H.A., Lo Leggio, L. and Skriver, K. 2005. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science. 10:79-87. doi:10.1016/j.tplants.2004.12.010
  24. Rai, G.K., Khanday, D.M., Choudhary, S.M., Kumar, P., Kumari, S., Martinez-Andujar, C., Martinez-Melgarejo, P.A., Rai, P.K. and Perez-Alfocea, F. 2024. Unlocking nature's stress buster: Abscisic acid's crucial role in defending plants agains abiotic stress. Plant Stress. 11:100359. doi:10.1016/j.stress.2024.100359
  25. Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C, Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K. and Yu, G. 2000. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science. 290:2105-2110. doi:10.1126/science.290.5499.2105
  26. Saab, I.N., Sharp, R.E., Pritchard, J. and Voetberg, G.S. 1990. Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of Maize seedlings at low water potentials. Plant Physiology. 93:1329-1336. doi:10.1104/pp.93.4.1329
  27. Souer, E., van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. 1996. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell. 85:159-170. doi:10.1016/s0092-8674(00)81093-4
  28. Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell. 18:2481-2498. doi:10.1105/tpc.104.022699
  29. Verma, V., Ravindran, P. and Kumar, P.P. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology. 16:86. doi:10.1186/s12870-016-0771-y