DOI QR코드

DOI QR Code

플라이애시가 혼입된 시멘트 페이스트의 탄산화 분석방법에 따른 상관관계 연구

Correlation Study of Carbonation Analysis Methods for Cement Paste with Fly Ash

  • 서은아 (한국건설기술연구원 구조연구본부) ;
  • 이호재 (한국건설기술연구원 구조연구본부)
  • 투고 : 2024.08.12
  • 심사 : 2024.10.08
  • 발행 : 2024.10.31

초록

이 연구는 OPC와 FA를 사용한 시멘트 페이스트를 대상으로 촉진탄산화 실험을 수행하고, 탄산화 된 페이스트의 성분분석을 통해 pH 예측방법의 상관성을 도출하였다. TG-DTA를 이용하여 열분해로 인한 중량변화 분석과 XRF를 이용한 성분분석을 수행하였으며, 각각의 실혐결과와 pH 측정결과에 대한 비교검토를 수행하였다. 이 연구에서는 CO2와 CaO의 성분비, 탄산칼슘과 수산화칼슘의 성분비와 pH간의 상관성 분석방법을 제안하였다. XRF로 측정된 CO2성분과 pH간의 관계를 분석한 결과, 모든 배합의 상관계수가 모두 0.84 이상으로 높은 상관성을 나타냈다. TG-DTA를 통한 탄산칼슘과 수산화칼슘에 대한 pH의 상관분석결과, 탄산칼슘에 대한 상관계수는 모든 배합에서 0.86 이상으로 나타났다. 다만 수산화칼슘과 pH간의 상관계수가 낮게 나타나 두 성분분석결과의 비율을 이용하여 pH와의 상관관계를 분석하였다.

This study conducted accelerated carbonation experiments on cement pastes using OPC and FA. It derived the correlation of pH prediction methods through component analysis of the carbonated pastes. Analysis of weight change due to thermal decomposition was performed using TG-DTA, and component analysis was conducted using XRF. A comparative review of each experimental result and pH measurement result was carried out. The study proposed a correlation analysis method between the component ratio of CO2 and CaO, the component ratio of calcium carbonate and calcium hydroxide, and pH. By analyzing the relationship between the CO2 components measured by XRF and pH, the correlation coefficients of all mixtures were 0.84 or higher, indicating a strong correlation.The correlation analysis of calcium carbonate and calcium hydroxide with pH using TG-DTA showed that the correlation coefficient for calcium carbonate was more than 0.86 for all formulations. However, the correlation coefficient between calcium hydroxide and pH was low, so a study was conducted to analyze the correlation with pH using the ratio of the results of the two components.

키워드

과제정보

본 연구는 원자력안전위원회의 재원으로 한국원자력안전재단의 지원을 받아 수행한 원자력안전연구사업의 연구결과입니다(No. 2203025).

참고문헌

  1. ASTM F 710-05. (2005), Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring, ASTM Standard International.
  2. Bates, R.G. (1973), Determination of pH-Theory and Practice, 2nd Edition, John Wiley & Sons, New York, NY, 479.
  3. Chang, C. F., and Chen, J. W. (2006), The experimental investigation of concrete carbonation depth. Cement and Concrete Research, 36(9), 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
  4. Cui, H., Tang, W., Liu, W., Dong, Z., and Xing, F. (2015), Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms. Construction and Building Materials, 93, 522-527. https://doi.org/10.1016/j.conbuildmat.2015.06.007
  5. De Weerdt, K., Plusquellec, G., Belda Revert, A., Geiker, M.R., and Lothenbach, B. (2019), Effect of carbonation on the pore solution of mortar, Cement and Concrete Research, 118, 38-56. https://doi.org/10.1016/j.cemconres.2019.02.004
  6. El-Jazairi, B., and Illston, J. M. (1977), A simultaneous semi-isothermal method of thermogravimetry and derivative thermogravimetry, and its application to cement pastes. Cement and Concrete Research, 7(3), 247-257. https://doi.org/10.1016/0008-8846(77)90086-2
  7. El-Jazairi, B., and Illston, J. M. (1980), The hydration of cement paste using the semi-isothermal method of derivative thermogravimetry. Cement and Concrete Research, 10(3), 361-366. https://doi.org/10.1016/0008-8846(80)90111-8
  8. EPA Method 1315. (2017), Mass transfer rates of constituents in monolithic or compacted granular materials using a semi-dynamic tank leaching procedure. Test method for evaluating solid waste, physical/chemical methods, U.S. Environmental Protection Agency.
  9. Guideline No 03740. (2003), Guideline for Inorganic Repair Material Data Sheet Protocol, International Concrete Repair Institute, Des Plaines, IL, 10.
  10. Hussain, S., Bhunia, D., and Singh, S. B. (2017), Comparative study of accelerated carbonation of plain cement and fly-ash concrete, Journal of Building Engineering, 10, 26-31. https://doi.org/10.1016/j.jobe.2017.02.001
  11. Kakali, G., Tsivilis, S., and Tsialtas, A. (1998), Hydration of ordinary portland cements made from raw mix containing transition element oxides. Cement and Concrete Research, 28(3), 335-340. https://doi.org/10.1016/S0008-8846(97)00250-0
  12. KS F 2103. (2023), Standard test method for pH of soils, Korean Standards Association (in Korean).
  13. KS F 2596. (2019), Standard test method for measuring carbonation depth of concrete, Korean Standards Association (in Korean).
  14. Lee, C. M. (2019), Study on the prediction concrete service life for nuclear power plant, Ph.D. Thesis, Department of Civil Engineering Graduate School, Daejin University (in Korean).
  15. Meng, D., Feng, J., Yeo, H. X., and Qian, S. (2024), Effect of carbonation on development of reactive MgO-based pervious concrete. Construction and Building Materials, 422, 135839.
  16. Ministry of Environment (ME) (2016), Korean standard method for waste, ES 06304.1 (in Korean).
  17. Mohammed, T., Torres, A., Aguayo, F., and Okechi, I. K. (2024), Evaluating carbonation resistance and microstructural behaviors of calcium sulfoaluminate cement concrete incorporating fly ash and limestone powder. Construction and Building Materials, 442, 137551.
  18. Moukwa, M., Farrington, S., and Youn, D. (1992), Determination of Ca(OH)2 in hydrated cement paste by differential scanning calorimetry, Thermochimica acta, 195, 231-237. https://doi.org/10.1016/0040-6031(92)80066-6
  19. Park, J. H., Kim, S. H., Kim, J. C., Choi, B. Y., Kwak, S. K., Han, D. H., Kim, Y. I., and Lee, S. W. (2021), Role of intercalated water in calcium hydroxide interlayers for carbonation reaction. Chemical Engineering Journal, 420, 130422.
  20. Parrott, L. J. (1994), A study of carbonation-induced corrosion. Magazine of Concrete Research, 46(166), 23-28. https://doi.org/10.1680/macr.1994.46.166.23
  21. Pourbaix, M. (1966), Atlas of electrochemical equilibria in aqueous solutions. NACE.
  22. Sanjuan, M. A., Andrade, C., and Cheyrezy, M. (2003), Concrete carbonation tests in natural and accelerated conditions. Advances in Cement Research, 15(4), 171-180. https://doi.org/10.1680/adcr.2003.15.4.171
  23. Savija, B., and Lukovic, M. (2016), Carbonation of cement paste: Understanding, challenges, and opportunities. Construction and Building Materials, 117, 285-301. https://doi.org/10.1016/j.conbuildmat.2016.04.138
  24. von Greve-Dierfeld, S., Lothenbach, B., Vollpracht, A., Wu, B., Huet, B., Andrade, C., Medina, C., Thiel, C., Gruyaert, E., Vanoutrive, H., Saez del Bosque, I.F., Ignjatovic, I., Elsen, J., Provis, J.L., Scrivener, K., Thienel, K. C., Sideris, K., Zajac, M., Alderete, N., Cizer, O., Van den Heede, P., Hooton, R.D., Kamali-Bernard, S., Bernal SA, Zhao, Z,, Shi, Z., and De Belie, N. (2020), Understanding the carbonation of concrete with supplementary cementitious materials; a critical review by RILEM TC 281-CCC, Materials and Structures, 53, 136. https://doi.org/10.1617/s11527-020-01558-w