DOI QR코드

DOI QR Code

상시 계측 데이터를 이용한 단경간 교량의 온도에 따른 진동 특성 변화 분석

Analysis of Vibration Characteristics Changes in a Single-Span Bridge Due to Temperature Using Continuous Measurement Data

  • 투고 : 2024.09.09
  • 심사 : 2024.10.16
  • 발행 : 2024.10.31

초록

우리나라는 사계절이 뚜렷하고 여름과 겨울의 온도차가 커서 교량들은 1년 중 큰 폭의 온도 변화를 겪고 있다. 교량 구조계는 온도가 변할 경우 동적 특성도 변하게 되지만 국내 교량 유지관리에서 내하력 평가 수행 시에는 이 영향을 고려하지 않고 단기간에 측정된 고유진동수만 평가에 사용된다. 이 논문에서는 이론적으로 고유진동수의 변화가 교량에 미치는 영향을 분석하고 1년 이상 연직가속도가 상시 계측된 교량에 대해 매일 고유진동수 추정 데이터를 추출하여 온도에 따른 변화를 확인하였다. 그 결과 고유진동수가 1% 감소하면 교량의 공용내하력은 약 2% 감소하는 것을 확인하였으며 계측 데이터로부터 온도가 10℃ 증가하는 경우 고유진동수는 RC슬래브교 및 라멘교에서는 영향이 없었으나 PSCI형교 및 강상자형 교에서는 1.04~2.48% 감소하는 경향을 확인하였다.

The Republic of Korea experiences four distinct seasons, with significant temperature differences between summer and winter, causing bridges to undergo large temperature variations throughout the year. When the temperature changes, the dynamic characteristics of bridge structures also change. However, during load-bearing capacity assessments in domestic bridge maintenance, this temperature effect is not considered, and only the natural frequency measured over a short period is used for evaluation. In this paper, we theoretically analyze the impact of changes in natural frequency on bridges and extract daily estimated natural frequency data from bridges with continuous vertical acceleration measurements taken over more than a year to confirm temperature-induced changes. The results show that a 1% decrease in natural frequency corresponds to an approximately 2% decrease in the load-bearing capacity of the bridge. Additionally, it was found from the measurement data that a 10℃ increase in temperature did not affect the natural frequency of RC slab bridges and Rahmen bridges, but in PSC-I girder bridges and steel box girder bridges, the natural frequency decreased by approximately 1.04% to 2.48%.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호20240108-001, 교량 스마트 유지관리 플랫폼(BMAPS) 및 AI 기반 디지털트윈활용 기술 개발)

참고문헌

  1. Cai, Y., Zhang, K., Ye, Z., Liu, C., Lu, K., and Wang, L. (2021), Influence of Temperature on the Natural Vibration Characteristics of Simply Supported Reinforced Concrete Beam. Sensors, 21, 4242.
  2. Kim, S. -Y., Chu, D. -S., Lee, H. -D., and Shin K. -J. (2018), Mechanical Properties of Structural Steel at Elevated Temperature. Journal of Korean Society of Steel Construction, 30(5), 257-264 https://doi.org/10.7781/kjoss.2018.30.5.257
  3. Cho, K., and Cho, J. -R. (2022). Effect of Temperature on the Modal Variability in Short-Span Concrete Bridges. Applied Sciences, 12, 9757.
  4. Cross, E. J., Koo, K. Y., Brownjohn, J. M. W., and Worden, K. (2013), Long-term monitoring and data analysis of the Tamar Bridge. Mechanical Systems and Signal Processing, 35(1-2), 16-34. https://doi.org/10.1016/j.ymssp.2012.08.026
  5. Cury, A., Cremona C., and Dumoulin, J. (2012), Long-term monitoring of a PSC box girder bridge: Operational modal analysis, data normalization and structural modification assessment. Mechanical Systems and Signal Processing, 33, 13-37. https://doi.org/10.1016/j.ymssp.2012.07.005
  6. Huynh, T. -C., Park, Y. -H., Park, J. -H., Hong, D. -S., and Kim, J. -T. (2015), Effect of Temperature Variation on Vibration Monitoring of Prestressed Concrete Girders. Shock and Vibration, 2015(1), 741618.
  7. Jeong, S., Lee, J., and Lee, K. -C. (2023), Seasonal Variation of Dynamic Properties of Honam High-speed Railway PSC Bridge, Journal of the Korean Society for Railway, 26(4), 260-267. (in Korean) https://doi.org/10.7782/JKSR.2023.26.4.260
  8. Jiao, Y., Liu, H., Wang, X., Zhang, Y. Luo, G., and Gong, Y., (2014), Temperature Effect on Mechanical Properties and Damage Identification of Concrete Structure, Advances in Materials Science and Engineering, 191360, 10.
  9. Jung, S. -J. and Lee, Y. -D. (1997), Property Change of Concrete at High Temperatures, Magazine of the Korea Concrete Institute, 9(4), 24-30. (in Korean) https://doi.org/10.22636/MKCI.1997.9.4.24
  10. KALIS (2021), Detailed Guideline for Safety and Maintenance Implementation of Facilities (Safety Inspection and Diagnosis), Korea Authority of Land and Infrastructure Safety (KALIS), Jinju, 2021. (in Korean)
  11. Kim, J. H., Kim, S. C., and Lee, S. G. (1999), Natural Frequencies of Simply Supported Tapered Beams, The Korean Society for Noise and Vibration Engineering, 9(3), 607-612.
  12. Kim, J. T., Yun, J. -Y., and Baek, J. -H. (2003), Modal Characteristics of Steel Plate-Girder Under Various Temperatures, Journal of Ocean Engineering and Technology, 17(6), 58-64. (in Korean)
  13. Kwon, T. -H., Jung, K. -S., Park, K. -T., Kim, B. -C. and Kim, J. -H. (2023), Wireless Bridge Health Monitoring System for Long-term Measurement of Small-sized Bridges, Journal of the Korea Institute for Structural Maintenance and Inspection, 27(4), 86-93. (in Korean)
  14. Lee, H. -C., Kim, J. -S., Park, K. -H., and Lee, J. -J. (2021), Analysis of the Frequency for Cable of Cable-Stayed Bridges to Temperature Variation, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(2), 23-34. (in Korean) https://doi.org/10.11112/JKSMI.2021.25.2.23
  15. Wang, W. Y., Liu, B., & Kodur, V. (2013). Effect of temperature on strength and elastic modulus of high-strength steel. Journal of materials in civil engineering, 25(2), 174-182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000600