DOI QR코드

DOI QR Code

측정 방법에 따른 도로 포장 종류별 소음 특성 비교 연구

Comparative Analysis of Noise Characteristics by Road Pavement Types as Measurement Methods

  • 송국곤 (한국건설생활환경시험연구원 음환경센터) ;
  • 배석경 (한국건설생활환경시험연구원 음환경센터) ;
  • 조우영 (한국건설생활환경시험연구원 음환경센터) ;
  • 조현우 (한국건설생활환경시험연구원 스마트건설재료센터 )
  • 투고 : 2024.09.03
  • 심사 : 2024.09.30
  • 발행 : 2024.10.31

초록

본 연구는 도심지에서 도로와 주거지역 간의 근접성 증가로 인해 발생하는 교통 소음을 저감하기 위해, 다양한 도로포장 방법의 소음 저감 효과를 비교 분석하였다. Dense Asphalt Concrete(DAC), Double Layer Porous Asphalt Concrete(DLPAC), Transverse Tining Concrete(TTC), Exposed Aggregate Concrete(EAC) 등 4가지 도로포장에 대해 CPX 근접소음 및 통과소음 측정을 통해 소음 특성을 평가하였다. CPX 측정 결과, 모든 포장에서 주행속도 증가에 따라 소음이 로그 함수 관계로 증가했으며, 특히 DLPAC 포장은 800 Hz 이하의 저주파수 대역에서 소음이 높고, 고주파수 대역에서는 소음이 낮아지는 특징이 나타났다. 이는 DLPAC 포장의 내부 공극에 의한 공명 효과와 압축 및 팽창 소음의 감소에 기인한 것으로 분석된다. 통과소음 측정에서는 DLPAC 포장이 DAC 포장보다 저주파수 대역에서 더 높은 소음을 나타냈으나, 이는 포장 상태의 내구성 저하와 외부 환경 소음의 영향을 받은 것으로 판단된다. 연구 결과, CPX 측정 방법이 주행 속도의 영향을 잘 반영하여 도로 소음 성능을 평가하는 데 더 적합한 것으로 나타났다. 다만, 본 연구는 제한된 현장 조건에서 수행되었으므로, 추후 다양한 현장과 조건에서 추가적인 연구를 통해 신뢰성을 확보할 필요가 있다.

This study investigates the noise reduction effects of various road pavement methods to mitigate traffic noise caused by the increasing proximity between roads and residential areas in urban environments. The noise characteristics of four types of road pavement-Dense Asphalt Concrete (DAC), Double Layer Porous Asphalt Concrete (DLPAC), Transverse Tining Concrete (TTC), and Exposed Aggregate Concrete (EAC)-were evaluated using CPX close-proximity noise and pass-by noise measurements. The CPX measurements showed that noise levels increased logarithmically with vehicle speed for all pavements. Specifically, DLPAC demonstrated higher noise levels in the low-frequency range below 800 Hz and lower noise levels in the high-frequency range, which is attributed to resonance effects within the internal pores of the pavement and the reduction of compression and expansion noise. In pass-by noise measurements, DLPAC exhibited higher low-frequency noise compared to DAC, likely due to pavement durability deterioration and the influence of external environmental noise. The results indicate that the CPX measurement method is more effective in evaluating road noise performance as it better reflects the impact of vehicle speed. However, since the study was conducted under limited site conditions, further research across various sites and conditions is necessary to enhance reliability.

키워드

과제정보

본 연구는 국토교통부 건설분야성능기반 표준실험절차 개발 사업 "기상환경재현 표준실험절차 개발(RS-2021-KA163243)"에 의해 수행하였다.

참고문헌

  1. Infrastructure and Transport Statistics Portal, "Road Penetration Rate Status" (2023), Ministry of Land, Infrastructure and Transportation (in Korean). 
  2. Ahn, H. S., Kim, I. H., Park, J. B., Lee, J. H., and Kim, G. S. (2012), Analysis of Research Trend and Development Direction on Domestic and International Noise Barriers, J. Kor. Soc. Environ. Eng., 34(12), 847-854 (in Korean).  https://doi.org/10.4491/KSEE.2012.34.12.847
  3. Jung, J. S., Sohn, J. R., Lee, S. H., and Yang, H. S. (2016), A Case Study on Noise Reduction Effect of Two-layer Porous Asphalt Pavement in an Urban Area, Int. J. Highw. Eng., 18(5), 49-56 (in Korean).  https://doi.org/10.7855/IJHE.2016.18.5.049
  4. Korean Society of Noise and Vibration Engineering, "Study on Establishing Criteria for Noise Reduction Performance Recognition of Low-Noise Pavement Roads (II)" ( 2016), Ministry of Environment Korea (in Korean). 
  5. Yoo, I. K., Lee, S. H., and Han, D. S. (2021), Tire/road Noise Characteristics of General Asphalt Pavement, Journal of the Korea Academia-Industrial Cooperation Society, 22(4) 175-182 (in Korean).  https://doi.org/10.5762/KAIS.2021.22.4.175
  6. Buhlmann, Erik (2019), Improvements in the CPX method and its ability to predict traffic noise emissions, Proc Inter-noise 2019, Madrid. 
  7. Yoo, I. K. (2020), Correlation between Proximity Noise Measurement Method (CPX) and Roadside Measurement Method (SPB) for Road Traffic Noise, Journal of the Korea Academia-Industrial Cooperation Society, 21(12), 310-319 (in Korean).  https://doi.org/10.5762/KAIS.2020.21.12.310
  8. KS F ISO 11819-2 (2017), Acoustics - Measurement of the influence of road surfaces on traffic noise - Part 2: The close-proximity method. Brussels, Belgium: European Committee for Standardization. 
  9. KS F ISO 13472-2, Acoustics - Measurement of sound absorption properties of road surfaces in situ - Part 2: Spot method for reflective surfaces, Korea Industrial Standards Commission (in Korean). 
  10. Hoffmann A., and Kropp W. (2019), Auralization of simulated tyre noise: Psychoacoustic validation of a combined model, Applied Acoustics, 145, 220-227.  https://doi.org/10.1016/j.apacoust.2018.08.026
  11. Xie J., Zhu, Y., and Wang, Z. (2022), Research on the Sound Absorption Performance of Porous Asphalt Concrete with Different Air Voids Based on the Finite Element Models, Applied Sciences, 12(21), 11050. 
  12. Kim, Y. W., Tae, S. G., Kim, Y. S., Kim, D., and Jang, Y. I. (2024), Research on the Sound Absorption Performance of Porous Asphalt Concrete with Different Air Voids Based on the Finite Element Models, Journal of the Korea Institute for Structural Maintenance and Inspection, 28(3), 59-65 (in Korean). https://doi.org/10.11112/JKSMI.2024.28.3.59