References
- Baurmann M., Gross T., Feudel U., Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, Journal of Theoretical Biology 245 (2) (2007), 220-229 https://dx.doi.org/10.1016/j.jtbi.2006.09.036
- Neuhauser C. M., Mathematical Challenges in Spatial Ecology, Notices of the American Mathematical Society 48 (11) (2001) 1304-1314.
- Levin S. A., Grenfell B., Hastings A., Perelson A. S., Mathematical and computational challenges in population biology and ecosystems science, Science 275 (5298) (1997), 334-343. https://dx.doi.org/10.1126/science.275.5298.334
- May R. M., Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.
- Berryman A. A., The Origins and Evolution of Predator-Prey Theory, Ecology 73 (5) (1992), 1530-1535. https://dx.doi.org/10.2307/1940005
- Kuang Y., Beretta E., Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology 36 (1998), 389-406.
- Jost C., Comparing predator-prey models qualitatively and quantitatively with ecological time-series data, PhD Thesis, Institut National Agronomique Paris-Grignon (1998).
- Quan S. G., Jin Z., Xing L. Q., and Li L., Pattern formation induced by cross-diffusion in a predator-prey system, Chinese Physics B 17 (11) (2008), 3936-3941. https://dx.doi.org/10.1088/1674-1056/17/11/003
- Sun G. Q., Zhang G., Jin Z., Li L., Predator cannibalism can give rise to regular spatial pattern in a predator-prey system, Nonlinear Dynamics 58 (1) (2009), 75-84. https://dx.doi.org/10.1007/s11071-008-9462-z
- Sun G.-Q., Jin Z., Li L., and Li B.-L., Self-organized wave pattern in a predator-prey model, Nonlinear Dynamics 60 (2010), 265-275. https://dx.doi.org/10.1007/s11071-009-9594-9
- Sengupta A., Kruppa T., and Lowen H., Chemotactic predator-prey dynamics, Physical Review E 83 (3) (2011). https://dx.doi.org/10.1103/PhysRevE.83.031914
- Lai Y.-M., Newby J., and Bressloff P. C., Effects of demographic noise on the synchronization of metacommunities by a fluctuating environment, Physical Review Letters 107 (2011).
- Shivam, Kumar M., Singh T., Dubey R., and Singh K., Analytical study of food-web system via Turing patterns, AIP Conference Proceedings 2481 (1) (2022).
- Shivam, Singh K., Kumar M., Dubey R., and Singh T., Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach, Chaos, Solitons & Fractals 162 (2022), 112420.
- Yuan S., Xu C., Zhang T., Spatial dynamics in a predator-prey model with herd behavior, Chaos: An Interdisciplinary Journal of Nonlinear Science 23 (3) (2013). https://dx.doi.org/10.1063/1.4812724
- Braza P. A., Predator-prey dynamics with square root functional responses, Nonlinear Analysis: Real World Applications, vol. 13, no. 4, pp.1837-1843, 2012, DOI:10.1016/j.nonrwa.2011.12.014.
- Wang W., Liu Q. X., Jin Z., Spatiotemporal complexity of a ratio-dependent predator-prey system, Physical Review E 75 (2007). https://dx.doi.org/10.1103/PhysRevE.75.051913
- Zhang X. C., Sun G. Q., Jin Z., Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response, Physical Review E 85 (2012). https://dx.doi.org/10.1103/PhysRevE.85.021924
- Dutt A. K., Amplitude equation for a diffusion-reaction system: The reversible Sel'kov model, AIP Advances 2 (2012). https://dx.doi.org/10.1063/1.4765650
- Jana S., Chakraborty M., Chakraborty K., Kar T. K., Global stability and bifurcation of time delayed prey-predator system incorporating prey refuge, Mathematics and Computers in Simulation 85 (2012), 57-77. https://dx.doi.org/10.1016/j.matcom.2012.10.003
- Tewa J. J., Djeumen V. Y., Bowong S., Predator-Prey model with Holling response function of type II and SIS infectious disease, Applied Mathematical Modelling 37 (2013), 4825-4841. https://dx.doi.org/10.1016/j.apm.2012.10.003
- Chen Y., Zhang F., Dynamics of a delayed predator-prey model with predator migration, Applied Mathematical Modelling 37 (2013), 1400-1412. https://dx.doi.org/10.1016/j.apm.2012.04.012
- Gambino G., Lombardo M. C., Sammartino M., Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Analysis: Real World Applications 14 (2013), 1755-1779. https://dx.doi.org/10.1016/j.nonrwa.2012.11.009
- Zuo W., Global stability and Hopf bifurcations of a Beddington-DeAngelis type predator-prey system with diffusion and delays, Applied Mathematics and Computation 223 (2013), 423-435. https://dx.doi.org/10.1016/j.amc.2013.08.029
- Xu S., Dynamics of a general prey-predator model with prey-stage structure and diffusive effects, Computers and Mathematics with Applications 68 (2014), 405-423. https://dx.doi.org/10.1016/j.camwa.2014.06.016
- Lonnstedt O. M., Ferrari M. C. O., Chivers D. P., Lionfish predators use flared fin displays to initiate cooperative hunting, Biology Letters 10 (2014). https://dx.doi.org/10.1098/rsbl.2014.0281
- Aguirre P., Flores J. D., Olivares E. G., Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ratio-dependent functional response, Nonlinear Analysis: Real World Applications 16 (2014), 235-249. https://dx.doi.org/10.1016/j.nonrwa.2013.10.002
- Khajanchi S., Banerjee S., Stability and bifurcation analysis of delay induced tumor immune interaction model, Applied Mathematics and Computation 248 (2014), 652-671. https://dx.doi.org/10.1016/j.amc.2014.10.009
- Kuznetsov V. A., Makalkin I. A., Taylor M. A., Perelson A. S., Non-linear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology 56 (2) (1994), 295-321. https://dx.doi.org/10.1007/BF02460644
- Lett C., Semeria M., Thiebault A., Tremblay Y., Effects of successive predator attacks on prey aggregations, Theoretical Ecology 7 (3) (2014), 239-252. https://dx.doi.org/10.1007/s12080-014-0213-0
- Sharma S., Samanta G. P., A ratio-dependent predator-prey model with Allee effect and disease in prey, Journal of Applied Mathematics and Computing 47 (2015), 345-364. https://dx.doi.org/10.1007/s12190-014-0779-0
- Zhang T., Xing Y., Zang H., Han M., Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality, Nonlinear Dynamics 78 (2014), 265-277. https://dx.doi.org/10.1007/s11071-014-1438-6
- Nagano S., Maeda Y., Phase transitions in predator-prey systems, Physical Review E 85 (2012). https://dx.doi.org/10.1103/PhysRevE.85.011915
- Brentnall S. J., Richards K. J., Murphy E., Brindley J., Plankton patchiness and its effect on larger-scale productivity, Journal of Plankton Research 25 (2) (2003), 121-140.
- Kelley J. L., Fitzpatrick J. L., Merilaita S., Spots and stripes: ecology and colour pattern evolution in butterflyfishes, Proceedings of the Royal Society B: Biological Sciences 280 (2013). https://dx.doi.org/10.1098/rspb.2012.2730
- Huang T., Zhang H., Yang H., Wang N., Zhang F., Complex patterns in a space- and time-discrete predator-prey model with Beddington-DeAngelis functional response, Communications in Nonlinear Science and Numerical Simulation 43 (2017), 182-199. https://dx.doi.org/10.1016/j.cnsns.2016.07.004
- Ma X., Shao Y., Wang Z., Luo M., Fang X., Ju Z., An impulsive two-stage predator-prey model with stage-structure and square root functional responses, Mathematics and Computers in Simulation 119 (2016), 91-107. https://dx.doi.org/10.1016/j.matcom.2015.08.009
- Jiao J. J., Meng X. Z., Chen L. S., Harvesting policy for a delayed stage-structured Holling II predator-prey model with impulsive stocking prey, Chaos, Solitons & Fractals 41 (2009), 103-112. https://dx.doi.org/10.1016/j.chaos.2007.11.015
- Mbava W., Mugisha J. Y. T., Gonsalves J. W., Prey, predator and super-predator model with disease in the super-predator, Applied Mathematics and Computation 297 (2016), 92-114. https://dx.doi.org/10.1016/j.amc.2016.10.034
- Wang C., Chang L., Liu H., Spatial Patterns of a Predator-Prey System of Leslie Type with Time Delay, PLOS ONE 11 (3) (2016). https://dx.doi.org/10.1371/journal.pone.0150503
- Rao F., Kang Y., The complex dynamics of a diffusive prey-predator model with an Allee effect in prey, Ecological Complexity 28 (2016), 123-144. https://dx.doi.org/10.1016/j.ecocom.2016.07.001
- Xu C., Yuan S., Global dynamics of a predator-prey model with defence mechanism for prey, Applied Mathematics Letters 62 (2016), 42-48. https://dx.doi.org/10.1016/j.aml.2016.06.013
- Banerjee M., Ghorai S., Mukherjee N., Study of cross-diffusion induced Turing patterns in a ratio-dependent prey-predator model via amplitude equations, Applied Mathematical Modelling 55 (2017), 383-399. https://dx.doi.org/10.1016/j.apm.2017.11.005
- Chen S., Wei J., Zhang J., Dynamics of a Diffusive Predator-Prey Model: The Effect of Conversion Rate, Journal of Dynamics and Differential Equations 30 (2018), 1683-1701.
- Chen S., Yu J., Dynamics of a diffusive predator-prey system with a nonlinear growth rate for the predator, Journal of Differential Equations 260 (11) (2016), 7923-7939. https://dx.doi.org/10.1016/j.jde.2016.02.007
- Wang L., Yao P., Feng G., Mathematical analysis of an eco-epidemiological predator-prey model with stage-structure and latency, Journal of Applied Mathematics and Computing 57 (2018), 211-228. https://dx.doi.org/10.1007/s12190-017-1102-7
- Huang C., Zhang H., Cao J., Hu H., Stability and Hopf Bifurcation of a Delayed Prey-Predator Model with Disease in the Predator, International Journal of Bifurcation and Chaos 29 (7) (2019). https://dx.doi.org/10.1142/S0218127419500913
- Tan W., Yu W., Hayat T., Alsaadi F., Fardoun H. M., Turing Instability and Bifurcation in a Diffusion Predator-Prey Model with Beddington-DeAngelis Functional Response, International Journal of Bifurcation and Chaos 28 (9) (2018). https://dx.doi.org/10.1142/S021812741830029X
- Jiang H., Wang L., Yao R., Numerical simulation and qualitative analysis for a predator-prey model with B-D functional response, Mathematics and Computers in Simulation 117 (2015), 39-53. https://dx.doi.org/10.1016/j.matcom.2015.05.006
- Zhang L., Fu S., Non-Constant Positive Steady States for a Predator-Prey Cross-Diffusion Model with Beddington-DeAngelis Functional Response, Boundary Value Problems 2011 (404696), 1-19. https://dx.doi.org/10.1155/2011/404696
- Zhang H., Xu G., Sun H., Biological control of a predator-prey system through provision of an infected predator, International Journal of Biomathematics 11 (8) (2018). https://dx.doi.org/10.1142/S179352451850105X
- Singh T., Banerjee S., Spatial Aspect of Hunting Cooperation In Predators with Holling Type II Functional Response, Journal of Biological Systems 26 (2018), 511-531. https://dx.doi.org/10.1142/S0218339018500237
- Clements H. S., Tambling C. J., Kerley G. I. H., Prey morphology and predator sociality drive predator prey preferences, Journal of Mammalogy 97 (2016), 909-927. https://dx.doi.org/10.1093/jmammal/gyw017
- Rao F., Chavez C. C., Kang Y., Dynamics of a diffusion reaction prey-predator model with delay in prey: Effects of delay and spatial components, Journal of Mathematical Analysis and Applications 461 (2018), 1177-1214. https://dx.doi.org/10.1016/j.jmaa.2018.01.046
- Lin M., Chai Y., Yang X., Wang Y., Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System, Mathematical Problems in Engineering 2019 (3907453), 1-10. https://dx.doi.org/10.1155/2019/3907453
- Yi F., Wei J., Shi J., Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations 246 (2009), 1944-1977. https://dx.doi.org/10.1016/j.jde.2008.10.024
- Singh T., Banerjee S., Spatiotemporal Model of a Predator-Prey System with Herd Behavior and Quadratic Mortality, International Journal of Bifurcation and Chaos 29 (4) (2019). https://dx.doi.org/10.1142/S0218127419500494
- Lu J., Zhang X., Xu R., Global stability and Hopf bifurcation of an eco-epidemiological model with time delay, International Journal of Biomathematics 12 (6) (2019). https://dx.doi.org/10.1142/S1793524519500621
- Alidousti J., Stability and bifurcation analysis of a fractional prey-predator scavenger model, Applied Mathematical Modelling 81 (2020), 342-355. https://dx.doi.org/10.1016/j.apm.2019.11.025
- Bezabih A. F., Edessa G. K., Koya P. R., Mathematical Eco-Epidemiological Model on Prey-Predator System, Mathematical Modelling and Applications 5 (3) (2020), 183-190. https://dx.doi.org/10.11648/j.mma.20200503.17
- Singh T., Dubey R., Spatial patterns dynamics of a diffusive predator-prey system with cooperative behavior in predator, Fractals 29 (4) (2021). https://dx.doi.org/10.1142/S0218348X21500857
- Clements H. S., Craig J. T., Kerley G. I. H., Prey morphology and predator sociality drive predator prey preferences, Journal of Mammalogy 97 (3) (2016), 919-927. https://dx.doi.org/10.1093/jmammal/gyw017
- Haque M., A Predator-Prey model with disease in the Predator species only, Nonlinear Analysis: Real World Applications 11 (4) (2010), 2224-2236. https://dx.doi.org/10.1016/j.nonrwa.2009.06.012
- Haque M., Greenhalgh D., When Predator avoids infected Prey: a model based theoretical studies, Mathematical Medicine and Biology: A Journal of the IMA 27 (1) (2009), 75-94.
- Bairagi N., Roy P. K., Chattopadhyay J., Role of infection on the stability of a Predator-Prey system with several response functions - A comparative study, Journal of Theoretical Biology 248 (1) (2007), 10-25. https://dx.doi.org/10.1016/j.jtbi.2007.05.005
- Das K. P., Kundu K., Chattopadhyay J., A Predator-Prey mathematical model with both populations affected by diseases, Ecological Complexity 8 (1) (2011), 68-80. https://dx.doi.org/10.1016/j.ecocom.2010.04.001
- Ajraldi V., Pittavino M., Venturino E., Modeling Herd behavior in population systems, Nonlinear Analysis: Real World Applications 12 (4) (2011), 2319-2338. https://dx.doi.org/10.1016/j.nonrwa.2011.02.002