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Abstract. The logistic growth model was developed with a single population in
mind. We now analyze the growth of two interdependent populations, moving be-
yond the one-dimensional model. Interdependence between two species of animals
can arise when one (the ”prey”) acts as a food supply for the other (the ”preda-
tor”). Predator-prey models are the name given to models of this type. While
social scientists are mostly concerned in human communities (where dependency
hopefully takes various forms), predator-prey models are interesting for a variety
of reasons. Some variations of this model produce limit cycles, an interesting sort
of equilibrium that can be found in dynamical systems with two (or more) dimen-
sions. In terms of substance, predator-prey models have a number of beneficial
social science applications when the state variables are reinterpreted. This paper
provides a quick overview of numerous predator–prey models with various types of
behaviours that can be applied to ecological systems, based on a survey of various
types of research publications published in the last ten years. The primary source
for learning about predator–prey models used in ecological systems is historical re-
search undertaken in various circumstances by various researchers. The review aids
in the search for literature that investigates the impact of various parameters on
ecological systems. There are also comparisons with traditional models, and the
results are double-checked. It can be seen that several older predator–prey mod-
els, such as the Beddington–DeAngelis predator–prey model, the stage-structured
predator–prey model, and the Lotka–Volterra predator–prey model, are stable and
popular among academics. For each of these scenarios, the results are thoroughly
checked.

1. Introduction

Modeling predator-prey interactions is an essential topic in mathematical biology
since one of the primary aspects of ecological systems is the link between differ-
ent species and their living environment. In conventional predator-prey models, the
growth function of prey species in the absence of predators, the predator’s mortality
function in the absence of prey, and the predator’s functional reaction function to the
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prey are all key components. The interplay between animals and their natural envi-
ronment defines ecological systems [1]. This type of interaction can take place on a
variety of spatial and temporal domains [2,3]. Population ecology is nearly as ancient
as the study of complicated population dynamics. Volterra and Lotka independently
devised a normal model of interacting species in the 1920s, which is now known by
their joint names. The predator-prey version of the model showed neutrally stable
cycles, despite the fact that it was a simplistic model [4]. Because of its worldwide
existence and importance, the dynamic interplay between predators and their prey
has long been and will continue to be a dominating issue in both ecology and mathe-
matical ecology [5]- [6]. The conservation of mass principle states that predators can
only grow in proportion to what they eat [7]. Predator-prey models are based on two
broad principles: the first is that population dynamics can be decomposed into birth
and death processes, and the second is that population dynamics can be decomposed
into birth and death processes.

The spatial and temporal behaviour of interacting species in ecosystems has piqued
people’s curiosity in recent years. Due of its universal occurrence and relevance,
predator-prey dynamical behaviour has long been and will continue to be one of the
most prevalent themes in ecosystems [8]- [13]. Unfortunately, the majority of studies
on the spatiotemporal predator-prey system with functional response focus on the
bifurcation events caused by changing the control parameter(s), with little attention
paid to the Turing pattern selection. In authentic ecological settings, our research
provides valuable insights into the dynamics of predator-prey interactions, with a
specific focus on the influence of cooperative hunting on pattern dynamics within
a diffusive predator-prey model. The significance of hunting cooperation becomes
pronounced in ecological systems where prey demonstrate herd behavior, as discussed
in previous studies [14].

In this paper, we look at the numerous studies that have been conducted during
the last ten years, from 2011 to 2020. Throughout this decade, we have attempted
to cover practically every model that has been developed using certain conditions to
analyse the influence on the environment by scientists and researchers all around the
world. It’s essentially review work using the most basic methods of literature survey.
Various research articles are available on prey-predator model, which we download.

2. Literature Review

2.1. Spatial Prey-Predator Models. Yuan et al. [15] discussed a spatial predator-
prey model with quadratic mortality in predator population and herd behavior in
prey population. Under the linear stability investigation, authors get the condition
for stationary pattern. With logistic growth in the prey and a square root response
function [16], the basic predator-prey model is given by
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Where U(t) and V (t) are the prey and hunter densities at time t, respectively.
The parameters p represent the prey’s growth rate, Q its carrying capacity, and m
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the predator’s death rate in the absence of prey. The search efficiency of V for U is
parameter β, the conversion or consumption rate of prey to predator is parameter b,
and the average handling time is parameter ta.

This research presents the Turing pattern selection in a spatial hunter-prey sce-
nario. The authors begin by obtaining the Turing space and constructing the ampli-
tude equations for the energised modes. The authors then use numerical simulations
to outline each of the three classifications: stripes, spots, and spots-stripes combina-
tions of Turing patterns around the onset of Turing bifurcation, demonstrating that
the model dynamics exhibit intricate design replica. It’s worth noting that the spatial
hunter-prey model can’t produce Turing structures if the hunter mortality is repre-
sented by a linear form. Quadratic mortality is thus the driving force behind the
Turing pattern. If the model’s parameter m changes little, the model’s qualitative
dynamics change. The hunter’s mortality rate is represented by m. According to
the biological perspective, obtained outcomes show that the mortality rate of hunter
might has an important job in the spatial hunter-prey model. We can acquire three
different patterns by adjusting the value of the hunter mortality m: stripe pattern,
spot pattern, and spot-stripe pattern. From the perspective on populace dynamics,
anyone can observe that there exists the spot design facsimile-the prey u was the
segregated zone with low density, and the rest of was with high density, this implies
the prey might break out nearby. The prey in this space is protected.

The above paragraph briefly touches upon the biological perspective of the model
outcomes. Expanding on this aspect, future work could involve a more detailed eco-
logical interpretation of the results. How do these patterns impact the predator-prey
dynamics in a real-world context? Are there implications for population persistence
or ecosystem stability? Such insights could have broader ecological relevance.

Braza [16] discussed about a hunter-prey model with herd behavior in the prey,
therefore hunter attack on the prey along the outside passage of the group of prey.
This type of model is examined by Ajraldi et al. [67]. With the help of mathemat-
ical outcome of the herd behavior, author has considered hunter-prey systems and
competitions models in which collaboration terms utilize the square root of the prey
populace as opposed to just the prey populace.

The dynamics of the square root system are compared to those of predator–prey
systems with a conventional Lotka–Volterra interaction term. To begin, Holling Type-
II response functions are obtained by employing time-budget arguments in the models.

(2)
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Here U(t) is stands for prey and V (t) is for predator. Growth rate of the prey is the
parameter g, carrying capacity is denoted by K, and in the absence of prey, d1 is the
death rate of the predator. The parameter β is the search efficiency of V for U , r is
consumption rate or biomass conversion, and ta is Y ′s average handling time of U .

If the hunter death rate parameter (d1) is very large, greater than the consumption
rate r of prey, then the hunter normally vanishes, leaving the prey to keep up with
itself after some time at the carrying capacity. For hunter death rates d1 less than yet
not very a long way from the rate r it use prey, the hunter and prey exist together in
a stable equilibrium. Because d1 is just moderate in size, the hunter can adequately
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support itself yet not develop excessively to clear out the prey. If the hunter mortality
rate gets more smaller, then the coexistence essentially becomes unstable. When d1
diminishes, at a Hopf bifurcation the stable steady state becomes unstable. The
populaces then, become stably periodic, however the amplitude increases quickly as
d1 diminishes less then the Hopf value. At a specific value of d1 = d∗1 less than the
Hopf value, the branch of stable periodic solution will be ends, beneath which the zero
populace steady state is the only stable solution. Fundamentally when the hunter’s
mortality rate d1 is very little, its fecundity take it to the end of the prey and afterward
itself.

2.1.1. Ratio-dependent predator-prey system. Wang et al. [17] examined the forma-
tion of a ratio-dependent predator-prey system with Michaelis-Menten functional re-
sponse and reaction diffusion. In a spatial domain, the conditions of Turing, wave,
and Hopf bifurcation are determined. Furthermore, the authors present a hypothet-
ical analysis of developmental processes that incorporates the distribution of living
creatures and their interaction with local diffusion in a spatially distributed popula-
tion. The outcomes of numerical simulations show that the development of segregated
groupings, such as spotted or stripelike or a combination of the two, is the normal
dynamics of population density variation. This research indicates that the spatially
extended model incorporates spiral waves and chaos in addition to more complicated
dynamic patterns in space. Exploring how the insights gained from this research could
be applied to real-world scenarios, such as ecological conservation or pest management,
could have practical implications. Developing strategies based on the observed pat-
terns to optimize resource allocation or control invasive species could be a relevant
avenue for future research.

Hunter-prey models satisfy two general principles: the first is that population dy-
namics can be divided into birth and death processes, and the second is the conser-
vation of mass principle, which states that predators can only grow in proportion to
what they have eaten. The following concepts can be used to design a canonical form
of a hunter-prey system:

(3)

{
Ṁ(t) = Mg(M)− f(M,Q)Q− µM(M)M,

Q̇(t) = γf(M,Q)Q− µQ(Q)Q,

where M(t), Q(t) are the prey and predator densities, respectively, and t is the
time, g(M) is the per capita prey growth rate in the absence of predators, µM and
µQ are natural prey and predator mortality, respectively, and f(M,Q) is the func-
tional response. The numerical response, often known as γf(M,Q), is the per capita
generation of predators due to predation. In general, one assumes that the primary
cause of mortality for the prey is eating.

Here writer has predominantly target on the ratio-dependent hunter-prey system
with Michaelis-Menten-type functional response:

(4)
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∀(M,Q) ∈ [0,∞]2 \ (0, 0), where M,Q denote the prey and predator density, re-
spectively. The diffusion coefficients of prey and predator are D1, D2, respectively.
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∇2 = ∂
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is the Laplacian operator in 2-D space. All of the parameters are

positive constants: m represents the prey’s maximum growth rate, f represents the
conversion efficiency, m represents the predator’s mortality rate, C represents the
carrying capacity, β represents the capture rate, and th indicates the handling time.

2.1.2. Spatial dynamics of the Beddington-DeAngelis hunter-prey model. Zhang et
al. [18] have systematically concentrated on the spatial dynamics of the Beddington-
DeAngelis hunter-prey model. Authors investigate the linear stability and acquire the
Turing instability condition for the model. Amplitude equations are obtained by the
authors and then drive the stability of various designs. It is observed that the model
has coexistence of stripe patterns and H0 hexagon patterns, Hπ hexagon designs, and
H0 hexagon designs. To all the more likely depict the real ecosystem like an open
system and consider the environmental noise. It is found that noise can diminish the
quantity of the patterns and make the patterns highly regular. In addition, noise can
produce two types of normal pattern infections. First one is from the Hπ hexagon
patterns to the standard stripe designs, and the second one is from the coexistence of
stripe patterns and H0 hexagon patterns to the ordinary stripe designs.

Authors created a hunter-prey model using the Beddington-DeAngelis or density-
dependent functional response and logistic prey growth, as shown below:

(5)
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where P (t) and Q(t) are the prey and predator densities at time t, g is the prey’s
intrinsic growth rate, C is the prey’s carrying capacity, r is the prey’s conversion rate to
predator, and d is the predator’s mortality rate. The Beddington-DeAngelis functional
response is defined as mP

s+P+fQ
. The value m represents the maximum number of prey

a predator may devour in a given amount of time, whereas the parameter s represents
the saturation constant. The term fQ measures the mutual interference between
predators, while the parameter f scales the impact of predator interference.

2.2. Prey-Predator Models with Amplitude Equation. Dutt [19] has estab-
lished an amplitude equation for the system of a weakly nonlinear hypothesis for a
model glycolytic diffusion-reaction system. The resulting amplitude equation’s linear
stability analysis explains the stability and structural changes of many forms of Tur-
ing structures. This amplitude equation also takes into account the fact that time-
invariant amplitudes in Turing structures are independent of the activator species’
complexing reaction, even though complexing reaction has a significant impact on
Hopf-wave bifurcation.

Jana et el. [20] describes a prey–hunter model including prey refuge. Accordingly,
authors studied about various biomass density of the prey populaces in two areas.
Authors include movements for the prey populaces between two areas. Additionally,
its noticed that the hunter populace is softly stronger in nature thus authors assume
their density dependent death rate. The reason for seeing the hunter population as
the stronger is since there is a location that is totally open for the prey population,
hence the hunter population’s fight for survival should be stronger. They may die if
they are substantially weaker, but because of their comparative stronger nature, they
are capable of surviving in the current biological structure. The system’s dynamical
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behaviour is investigated. The presence of refuges clearly has an impact on the coex-
istence of prey and hunter populations, as evidenced by the results. The presence of
a prey refuge causes the density of the prey population to increase, while the density
of the hunter population decreases, according to biological criteria. It has been shown
that the effects of refuges can help to stabilise the system. The density-dependent
death rate for hunters is found to play a substantial impact in the dynamics of the
proposed model system. The obtained results show that the density-dependent death
rate for hunters can cause a stable equilibrium to become unstable, and interestingly,
if the density-dependent death rate for hunters reaches its critical value, a fundamen-
tal Hopf bifurcation is obtained. Additionally, if the density-dependent death rate
for hunters is high, the prey and hunter populaces will converge to their equilibrium
levels after a period of repeated oscillations around the equilibrium. Though, as the
density-dependent death rate of hunters falls, oscillations rise, the positive steady
state vanishes, and the customer population perishes. On average, the dynamics of
delay differential equations are substantially more complex than those of conventional
differential equations. The authors also looked at the effects of discrete time-delay
on the dynamics of the prey hunter system. Time delay has been found to have a
significant impact on the dynamics of the prey predator system. The results show
that a time delay can make a stable equilibrium unstable, and that when the time
delay reaches a critical threshold, a fundamental Hopf bifurcation occurs. The sta-
bility of bifurcating periodic solutions and the behaviour of the Hopf bifurcation are
investigated using the Center Manifold Theorem and the Normal Form Method. The
authors develop the requirement for the system to be globally asymptotically stable
in the presence of delay using a decent Lyapunov function at the interior equilibrium
point.

Tewa et al. [21] analytically studied the impact of a SIS infectiuos disease in a
Predator–Prey model influencing both Predators and Preys or Preys. The response
function utilized in this study is Holling function type II. Authors have seen that
when the infection shows up in Prey populace, just the Preys can vanish; just the
Predator can vanish; the uninfected Preys and Predators can vanish and then, only
diseased preys persist. The illness can vanish or persevere locally. The biological
explanation of Hopf bifurcation is that the hunter exists together with the sensitive
Prey and the infected Prey, showing oscillatory balance behavior. To prevent the
vanishing of the species, one should look cautiously a few parameters, in particular,
the infection rate, the growth rate of the sensitive populace and the mortality rate of
the infective population. Without sickness, the systems are unsteady about the origin.
Consequently, there is no chance of extinction of the populaces. This isn’t true in the
case of a diseased system. A subset of these outcomes are concerned with the [63]- [66]
outcomes. However, because the authors of this study used mass action incidence,
they had no problems with behaviour near the source. The behaviour surrounding
the origin was investigated, and the dynamics near the origin are complicated due to
standard incidence, with the populace arriving at the origin either along the axis or
in a spiral pattern.

Considering of the availability of prey, Chen and Zhang [22] developed a delayed
hunter-prey model with hunter migration. The model is useful to the significant bi-
ological control. Their aim is the impacts of the delay and migration rate on the
dynamics of the model. This model can have either two or three equilibria. At the
point when the migration rate is consider as a bifurcation parameter, one has in
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backward bifurcation. Then authors examined the linear stability of the equilibria.
The stability of the trivial equilibrium and the boundary equilibrium is very simple.
Their stability is delay-free. Though, the result may not be legitimate for the posi-
tive equilibrium. Authors got sufficient conditions for the stability and instability for
the positive equilibrium. In major circumstances, the stability is depend on delay.
Besides, the stability of the positive equilibrium can switch by the delay. Hopf bifur-
cation can exist at the point where the positive equilibrium drops stability. Utilizing
the normal form theory and the center manifold method, authors likewise determined
the stability and direction of the Hopf bifurcation. Presently, authors display a few
remarks on biological control. The superior outcome is to vanish the prey. It can
be obtained by discovering natural adversaries which have main elective food to alive
and picking the migration rate smaller than the intrinsic growth rate of the hunter.
For this situation, the hunting factor has an significant role rather than the migra-
tion rate.Though, eliminating the prey is either not possible or very expensive. The
coexistence equilibrium is stable for little delay. it is authentic that the hunter won’t
require a large time period to change the prey organism. Authors can hold the prey
through economic injury level (EIL) by changing the value of the migration rate.

Gambino et al. [23] looked studied how the Turing mechanism causes nonlinear
cross-diffusion for two linked reaction-diffusion equations in a two-dimensional space.
The possibility that the Turing bifurcation occurs due to a degenerate eigenvalue com-
plicates the inquiry technically, but it results in a large number of patterns (Figure1)
that adorn the plane and appear as steady state solutions of the reaction-diffusion
system. Squares, mixed-mode, and roll designs, of which supersquares and hexagons
are examples. Near the onset of instability, the authors received the amplitude equa-
tions, which provide a mathematical explanation of the reaction-diffusion system. The
study of amplitude equations has uncovered a number of phenomena, including stable
subcritical Turing designs and many branches of stable solutions that lead to hys-
teresis. Rolls bifurcate supercritically from their equivalent fundamental bifurcation
point, and hexagonal patterns form by a subcritical bifurcation. Hence, there is a
bistable area where the two rolls and hexagons are stable; nevertheless, rolls appear
as a transient state due to a spatially modulated cross-roll instability, forcing the so-
lution toward a mixed modes design. We were only partially successful in explaining
the instability as a result of mode competition.

The dynamics of a diffusive hunter-prey system with the Beddington–DeAngelis
functional response and two delays were examined by Zuo [24]. The presence of
Hopf bifurcations and the stability of constant equilibria are investigated by studying
the characteristic equations using the two delays as a bifurcation parameter. Using
the normal form hypothesis and the centre manifold of partial functional differential
equations, the equations determining the stability and direction of bifurcating peri-
odic solutions are also inferred. The upper–lower solutions technique, in particular,
provides sufficient requirements for the global stability of the positive equilibrium.

Xu [25] looked on the dynamics of a diffusive prey–hunter model with broad func-
tional response and prey stage structure. First, he considers Hopf bifurcation and
asymptotical stability of equilibrium points for the simplified ODE system. For the
equivalent reaction-diffusion system, uniform boundedness, the presence of global so-
lutions, and the stability of equilibrium points have also been investigated. Finally,
we demonstrate the significance of huge diffusivity by constructing the presence and
nonexistence of nonconstant positive stable states of this reaction-diffusion system.
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Figure 1. Left: the species u. Right: the species v. The parameters
are µ1 = 1.2, µ2 = 1, γ11 = 0.5, γ12 = 0.4, γ21 = 0.38, γ22 = 0.4, a1 =
0.01, a2 = 0.001, c1 = 0.1, c2 = 0.2, γ = 28.05, b2 = 1.1, b = 7.264 > bc

= 7.192.

The outcomes demonstrate the importance of the hunter species’ dispersion rate. The
hunter’s high diffusion rate will aid in the formation of patterns. However, the absence
of spatial patterns can be caused by a high diffusion rate of young prey species or a
high diffusion rate of adult prey species.

According to the standpoint of bifurcation evaluation, Aguirre et al. [27] examined
a predation model with ratio-dependent functional response and strong Allee effect.
By expanding the model vector field over the full first quadrant and modifying the
parameters suitably, the authors demonstrated that any viable solution stays both
nonnegative and confined. The authors also looked at the existence and local stabil-
ity of equilibrium sites along the positive horizontal axis. When the size of the prey
population equals its carrying capacity, this equilibrium occurs, and it can either be a
saddle point or an attractor. The second equilibrium can be either a repeller or a sad-
dle point, with a population size equal to the rescaled Allee parameter m = M

K
. It was

revealed that the origin is frequently a non-hyperbolic attractor. As a result, the origin
always has an open two-dimensional bowl of attraction in the first quadrant for every
combination of parameter values. As a result, there is long-term extinction when the
initial conditions are in this bowl. The sort of bowls of attraction of attractive equilib-
ria on the inner of the first quadrant determines the circumstances for the two species’
endurance. They discovered particular types of conditions on parameters that allow a
positive equilibrium point to pass through Bogdanov–Takens, saddle–node, and Hopf
bifurcations using hypothetical techniques from nonlinear dynamics and bifurcation
inquiry. Furthermore, the authors demonstrated that the Bogdanov–Takens point is
an organising centre for the probable endurance/extinction situations of the two pop-
ulations when the hunter growing ability is greater than the rescaled mortality rate,
using correct methods for numerical bifurcation examination and the calculation of
global invariant manifolds of equilibria, which were carried out in the software pack-
age Auto. The features of the bowl of attraction of the attractive equilibrium are
illustrated in many conceivable scenarios around the Bogdanov–Takens singularity by
the authors. Its bowl boundary appears to be the mathematical Allee threshold that
both species must surpass in order to avoid falling into the origin’s bowl of attraction,
which leads to mutual extinction.
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2.3. Time Delay and Hopf Bifurcation Investigation. Khajanchi and Baner-
jee [28] studied an enhanced quantitative mathematical model of Kuznetsov et al. [29]
addressing tumor-immune interaction with discrete time delay. The model’s quali-
tative investigation, which included Hopf bifurcation investigation, was studied. To
preserve stability and related criteria, a delay estimation has been acquired. The au-
thors get definite expression for the direction of Hopf bifurcation and the stability of
bifurcating periodic solutions utilizing the centre manifold theorem. The logical dis-
coveries have been confirmed through mathematical reenactments. If we fluctuate the
time delay and also the system parameters, then the model system shows complex dy-
namical behavior. The suggested model has an exceptionally rich biological dynamics
and shows stable irregular and regular periodic oscillations for various parameter val-
ues. The model doesn’t consider the biological complexity of tumors but this model
target on the generic reaction between the immune system interactions and tumor
cells. By Utilizing the model simulations, the eccentric development of tumor cells in
vivo and the clinical tests could be clarified or solved. The model indicates for both
the low and high tumor load can have oscillatory behaviors. The connection among
the immune system and cancer demonstrates more complicated dynamical behaviour
such as periodic and non-periodic oscillations, as well as arbitrary behaviours such as
chaotic or high periodic behaviours, when the parameters are changed across a huge
range. The impact of different system parameters for various amounts of time delay
is examined, revealing the system’s complex biological dynamics.

Lett et al. [30] did the study of a group of aerial and aquatic hunters assaulting
a swarming fish school showed that a multi-explicit gathering of hunters are more
productive at irritating a fish school than a solitary-species gathering of predators.
Likewise, the irriation is higher when the number of assaults is such that prey have
not sufficient time to get back to swarming. These discoveries propose that aerial
and aquatic foragers might got common advantages in making mixed foraging gath-
erings. Even single-species gathering of hunters are more effective at irritating prey
by increasing number of assaults.

Sharma and Samanta [31] have built an eco-epidemiological hunter prey model
where just the prey populace is infected by an infectious infection. Thus, the prey
populace is classified into two sub categories: infected and susceptible. Additionally,
authors have included a susceptible prey endurance limit for Allee impact. Then, at
that point authors have talked about the dynamical nature of the system at different
equilibrium points and the stability of equilibrium points for both weak and strong
Allee effect. The system’s stability flips around the interior equilibrium, and a Hopf
bifurcation exists around the interior equilibrium, using the susceptible prey survival
limit for Allee effect as the bifurcation parameter. All significant analytical discover-
ies are confirmed mathematically by utilizing MATLAB. For both weak and strong
Allee effects, mathematical investigations display the dynamical nature of the sys-
tem at various equilibrium points for various sets of parameters. These data show a
good contrast between the behavioural changes in the model’s dynamics for weak and
strong Allee effects, which is undoubtedly very helpful in understanding the model’s
dynamics and agrees with our in-depth analyses. It can be seen that the sensitive
prey survival limit for the Allee effect assumes a vital role in maintaining populace
stability. Our mathematical investigations show how the stability alters the interior
equilibrium when a is used as the bifurcation parameter. At last, the authors find
that the eco-epidemic hunter-prey model for Allee effect with susceptible prey survival
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limit displays fascinating dynamics. However, due to the assumptions made and the
problems in calculating the model parameters, the mathematical model introduced in
this study should be approached with caution. Just sensitive prey species are thought
to grow logically, while infected prey species are unable to reproduce since they die
before reaching reproductive age. In this way, the authors may fine-tune the model
by assuming the infected prey populace’s logistic development. The infection in the
hunter populace can likewise be incorporated, which might give us an exceptionally
rich elements.

Zhang et al. [32] used the diffusion to investigate pattern development in a spatial
hunter-prey model with hyperbolic mortality rate. The Turing space was initially
partitioned, with the Hopf bifurcation curve and Turing instability curves surround-
ing it. After that, the authors examined the stability of certain basic bifurcations,
such as squares, stripes, and spots, using the amplitude equations. Finally, if the
control parameter is not in the Turing space, we analytically investigated the starting
value-controlled design simulations. Furthermore, the authors discovered the dynam-
ical distinction between the various death rates. For example, the occurrence of the
positive equilibrium, which exists only if certain requirements are met for quadratic
and linear [33] death rates [15]; however, it frequently exists for hyperbolic death
rates, which are used when modelling plankton population dynamics [34]. According
to an environmental perspective, in general homogeneous cases with quadratic and
linear mortalities, both prey and hunter populaces will end ultimately due to the non-
presence of positive equilibrium. In any event, if it exists under some condition, linear
death rate in the spatial model can not generate Turing instability however fascinat-
ing grid, and winding designs have been found [33]. For this situation, the positive
equilibrium is either consistently stable or unstable, but none of the forms can gener-
ate Turing instability. In ecology, there are two related phenomena: (1) hunter and
prey populations coexist in the relevant 2-D region, and (2) hunter and prey densities
oscillate, which is related to irregular designs. Although quadratic mortality cannot
generate squares [15], it can cause Turing instability. Positive equilibrium exists in
the absence of hyperbolic mortality, and when it is stable, the hunter and prey exist
together in general. Stable Turing designs structure, which not just suggests both
hunter and prey persevere in space, but in addition some environmental implications:
spots are expected as a hunter guard function, and stripes are connected to the hunter
guard and social communication [35]. The environmental implications of spirals and
squares are not satisfactory right now.

The spatial patterns formation of hunter prey systems is a significant issue. Huang
et al. [36] have address the problem by constructing a time-discrete and new space
hunter-prey model with a Beddington-DeAngelis functional response to characterise
the predation relationship. The discrete model is based on a coupled map lattice with
a nonlinear interaction between the hunter-prey reaction stage and the dispersal stage.
The parametric requirements for design production are derived by investigating Hopf
instability and Turing instability for the discrete model. Mathematical simulations
display an interesting collection of spatiotemporal patterns, containing irregular and
regular patterns of labyrinth, stripes, spots, spirals, mosaics, gaps, circles, and some
inermediate patterns in-between. The designs obtained cover the maximum of hunter
prey design types documented in the literature. Moreover, the discrete model forecast
the existence of spatiotemporal choas, which are liable for the production of uneven
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patterns. This study exhibits that the discrete model’s nonlinear mechanisms grab
the comlexity of design production in hunter-prey systems better.

Ma et al. [37] studied and examined a stage-structured hunter prey model with
square root functional responses and pulses. With the help of simulation, authors
display the rich dynamic characteristics of the related system. The global attrac-
tivity of the hunter-eradication periodic solution of system is initially shown to be
dependent on the harvesting effect and mortality. Not just the worldwide attractivity
furthermore, the lastingness are represented adequately in this part, yet in addition
the complicated bifurcation charts are provided. In paper [38], Jiao and Meng in-
ferred that abundance collecting could cause the annihilation of hunter populace, and
sensible reaping could guarantee the supportable improvement of natural assets, and
the conduct of rash loading on prey assumed a significant part for the changelessness
of the framework they examined. Our outcomes in this paper are steady with those
in [38]. Nonetheless, we research seriously fascinating dynamical practices of system
that Meng and Jiao had not broke down. The got outcomes suggest that, if the
mean length of adolescent period tau is bigger than a specific worth, the adult hunter
will be too alarm to create, henceforth, we should control gathering in a less level
to guarantee the feasible improvement because of the long adolescent period tau of
juvenile hunter. Moreover, bifurcation outlines of imprudent period T show that the
system displays stable, multiplying occasional, mayhem, cycles, course, etc. We can
be certain that time delay and drive assume a significant part in the administration
of agrarian assets, which makes the biological system shows more intricate and flighty
practices.

Mbava et al. [39] examined the dynamics of a hunter-prey model with super hunter
infection. The hunter is confronting extinction due to huge competition from the
super hunter. The infection is assumed to be biological control, allowing the hunter
population to recapture from a low population. The outcomes spotlight that without
extra death rate on hunter by super hunter, the hunter populace survives eradication.
At present levels of illness incidence, the super hunter populace is vanished out by
the sickness. Though, the super hunter populace survives by eradication if the illness
occurrence rate is low. Perseverance of all populaces is probable on account of low
infection occurrence rate and no extra mortality granted on hunter. A subsystem with
two species, hunter and prey, is also assumed as an extraordinary example to find the
impact of removing the super hunter from the system on the hunter’s survival. This
is regarded as a unique feature of the smaller parks. The outcomes demonstrates that
the hunter populace flourishes good in the absence of its primary competitor, with its
populace ascending to at least double its starting value.

Wang et al. [40] studied a spatial Lesile type hunter prey system with time delay
and Holling type III functional response. To know the effect of diffusion and delay on
the instability, authors have made hypothetical investigation and mathematical sim-
ulations. Because of the equilibrium can’t be displayed in a applicable closed form,
we can’t talk about its qualitative properties in ordinary daily practice. Initially,
we talk about the qualitative characteristics and number of +ve equilibrium through
the actual parameters. Besides, there are two kinds of instability that authors have
discussed here: delay promoted instability and diffusion induced instability. At last,
mathematical simulations are carry out to display the hypothetical discoveries (Fig-
ure2). Both the hypothetical and mathematical outcomes display that the interaction
between time delay and diffusion can bring about stationary patterns. Though, it
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Figure 2. Three types of spirals induced by delay. The param-
eters are (a) η = 1, τ = 1.2, D1 = 0.002, D2 = 0.1, u∗ =
0.3, v∗ = 19.13333333, ε = 80, γ = 0.01567944251. (b) η = 0.8, τ =
1.5, D1 = 0.002, D2 = 0.08, u∗ = 0.3, v∗ = 52.73333334, ε = 240, γ =
0.005689001264. (c) η = 0.85, τ = 1.5, D1 = 0.01, D2 = 0.38, u∗ =
0.3, v∗ = 19.13333333, ε = 80, γ = 0.01567944251.

must be noticed that the technique used in this study is just appropriate for little
time delays. If the delay is huge, different methods should be applied to discover the
Turing instability condition.

Xu et al. [42] investigated a hunter-prey model with prey species defence mech-
anisms. Initially, the existence of Hopf bifurcation, local stability of equilibriums
without trial, and singular dynamics near to the origin equilibrium were investigated.
The authors then showed that if the positive equilibrium is locally asymptotically
stable or does not exist, periodic orbits do not exist. If the positive equilibrium is
unstable, the uniqueness and existence of breaking point cycles are proved. We were
able to determine the model’s global dynamics by using the outcomes. The dynamics
of a hunter-prey model with a protection component are more rich than conventional
models and make ecological sense. The rise of oscillation is due to the protection com-
ponent of the prey species, according to the conventional L-V predation model. Also,
traditional models normally estimate the origin equilibrium as a saddle point, imply-
ing that the prey species will recover regardless of how little it recovers in comparison
to the hunter species. Conversely, solution behaviour around the origin equilibrium
is singular for non-dimensional models. When the prey populace is reasonable lesser
than the hunter populace, the prey species goes extinct first, followed by the hunter
species. This is sensible from an ecological standpoint.

Banerjee et al. [43] have investigated a spatio-temporal prey-hunter model with
ratio dependent functional response and cross-diffusion terms. The impacts of cross-
diffusion to the model have been studied by using numerical simulations and amplitude
equations in nearby area of Turing bifurcation curve. The functional response relies
upon the densities of both hunter and prey populace. Though, when the prey just
only dependent functional response is considered, then the self-dispersion framework
don’t give any Turing pattern except if nonlinear or linear cross-dispersion terms
are involved in the system. The shifting of the species of a populace is exception-
ally affected by the attendance, nonappearance or plenitude of the other. So, cross-
dispersion terms are incorporated in the spatio-temporal prey-hunter model, and the
obtained patterns are influenced by them. In the spatio-temporal expansion of the
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supposed model, cross-diffusion plays a meaningful role in pattern resolution and se-
lection. Cross-diffusion variables are included to account for the impact of a single
individual’s population density on the movement of different species that are separated
from arbitrary diffusion of both species.

Chen [44] did an investigation on the diffusive hunter-prey system. A wide range
of hunter-prey models was covered by authors which incorporate some famous ones
but additionally some less examined ones. The conversion rate is an important com-
ponent that influences the dynamics of a general hunter-prey model, according to the
authors, and there are very few complex patterns for small and large conversion rates.
Consequently, this incident can happen ordinarily in hunter-prey models, as shown
in [45] for a unique hunter-prey model with a nonlinear development rate. Authors
show the nonexistence of the positive steady states in the case of large conversion
rate.

2.4. Eco-epidemiological Model, Turing Instability and Turing Patterns.
Huang et al. [45] built a delayed eco-epidemiological model. In addition, the model
is mathematically investigated in terms of dynamics like positive solutions, equilib-
rium stability, and their existence. Moreover, utilizing the incubation duration as a
bifurcation parameter, it can be seen that if the parameter reaches specific critical
values, a Hopf bifurcation might happen around the equilibrium points. The Hopf
bifurcation’s stability and direction about the inside equilibrium point were also ex-
amined. The age-structure, stage-structure, and spatial part of ecological interactions
have all been recognized as significant ingredients in how ecological communities are
formed, and knowing the importance of these impacts is difficult both hypothetically
and observationally [Wang et al. [46]]. The dynamic examination for the epidemiolog-
ical prey–hunter model is far from complete due to its complexity [Wang et al. [46];
Das [47]]. Under certain boundary conditions, it is necessary to better understand
the dynamical behaviours of an epidemiological prey–hunter model with age-structure,
reaction-diffusion, or stage-structure impacts.

Tan et al. [48] investigated the dynamic behaviour of a reaction–diffusion hunter–prey
model with Beddington–DeAngelis functional response in an experimental case study.
The comparative ODE system allows for complex dynamics as well as stable limit
cycles and a Hopf bifurcation. They have demonstrated global and local stability,
Turing designs, and fixed patterns with dispersion and cross-dispersion in [Jiang et
al. [49]; Zhang and Fu [50]]. The Hopf bifurcation and Turing instability are investi-
gated in this paper. Additionally, they demonstrate the existence of Hopf bifurcation,
nonconstant steady state solution, and Turing–Hopf bifurcation using numerical simu-
lations, demonstrating that diffusion coefficients and parameters affect spatiotemporal
behaviour. More investigations are mandatory to inspect the quantitative and quali-
tative changes of pattern production.

The stability and dynamics of the hunter-prey system are significantly affected
by epidemic transmission, with the transmission rate playing a key role. Zhang et
al. [51] employed a probabilistic cellular automaton (PCA) technique to investigate
the spatiotemporal dynamics of a hunter-prey system with an infected predator. In
a geographical populace, obtaining a conjunction state of prey, vulnerable hunters,
and infected hunters is impossible. This is not the same as using the mean-field
estimate to investigate a non-spatial populace, when Hopf bifurcation occurs and the
inner equilibrium becomes unstable, and a periodic solution appears as the disease
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rate rises. The outcomes suggest that presenting an infected hunter with a high
transmission rate is advantageous to the prey population’s stubbornness in space. A
low transmission rate, on the other hand, will result in the cohabitation of prey and
sensitive hunter populaces. In brief, management approaches can be developed to
reduce the infected hunter’s transmission rate for the benefit of biological control.

In hypothetical ecology, serious investigations of the mechanisms and scenarios of
pattern development, in models of interacting populaces, have consistently been a fas-
cination, as their realization helps to improve the comprehension of real-world natural
systems. Singh and Banerjee [52] performed an analysis on a diffusive hunter-prey
model with type II functional response in hunters and non-zero initial conditions and
zero-flux boundary conditions. The authors conducted thorough research of both
spatiotemporal and non-spatial models, as well as an analysis of alternative design
production scenarios in the diffusive hunter-prey model with hunter collaboration.
We first obtained the condition for diffusive instability and distinguished the relevant
region in the space of controlling parameters while focusing on the spatiotemporal
model. In our study, the regulating parameters are the hunting cooperation coeffi-
cient, the hunter’s fundamental reproduction number (C), and the ratio of dispersion
coefficient. The authors use extensive mathematical simulations to investigate the
system’s properties using parameter values from both the non-Turing and Turing do-
mains. The model simulation has been split into two domains: Turing and non-Turing
domains. The impact of hunting collaboration in hunters, as well as the fundamental
reproduction quantity of hunters, has been highlighted by the authors. The authors
confirmed that in the non-Turing domain, with C > 1, the hunter population rose with
slight hunting cooperation and decreased with an increase in the hunting cooperation
coefficient by simulating numerically. Furthermore, for C < 1, an increase in hunting
cooperation among hunters aids their survival. In the Turing domain, where C < 1,
hunting cooperation among hunters is critical for coexistence. We acquire many types
of diffusive patterns by varying the values of fundamental reproduction number and
cooperation coefficient, such as mixed patterns, stripe patterns, and patchy patterns.
Anyone can see the pattern development for preys from the perspective of population
dynamics, meaning that the prey are spread with low density and the residual region
is with high density, implying that the preys have isolated in small gatherings over a
large area and are protected. Similarly, spot formation in hunters ensures that, even
when hunting cooperatively, the hunters are dispersed and segregated, the hunter lives.
Big African hunters like lions (Pathera leo), leopards (Panthera pardus), and cheetahs
(Acinonyx jubatus) regularly predate ungulates two times their size, posing a risk of
injury or death to the hunter during prey capture. However, cooperative hunting can
easily overcome this risk, potentially increasing hunting success rates. [53]

Rao et al. [54] focus on the complicated dynamics of a Monod-Haldane-type hunter-
prey cooperation model, which includes: (a) A predetermined time delay in the de-
velopment of the prey; (b) dispersion in both the hunter and the prey. When the
associated ODE model includes either a single inside equilibrium with two inside at-
tractors or two inside equilibria, numerical simulations were run to show the effects of
dispersion and delay. Theoretical and numerical results reveal that dissemination can
either destabilise or stabilise the system, that a large delay can destabilise the system,
and that the combination of dissemination and delay can exacerbate the system’s in-
stability (Figure3 - 5). Also, if this ODE system has two interior equilibria, time
delay or prey dispersion, or both, could lead to the hunter’s extinction. The findings
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could provide us with useful biological information on population management for
prey-hunter cooperative systems.

Figure 3. r = 1.0, a = 0.35, b = 0.1, d = 0.72 : E∗1 =
(0.3889, 0.3301) is locally asymptotically stable.

Figure 4. τ = 1.716 > τ0 = 0.676: Large delay causes large oscilla-
tions that lead to the extinction of predator.

Lin et al. [55] studied a new homogeneous diffusive hunter-prey system with herd
behaviour extending to the square root of the prey population. The authors are able
to demonstrate the existence of both spatially homogeneous and inhomogeneous peri-
odic solutions bifurcating from the positive constant steady state solutions using the
classical Hopf bifurcation theorem pertinent to the generic reaction-difusion equations
due to [56]. The equations for determining the instability and stability of homoge-
neous periodic solutions are obtained by the authors (Figure 6 - 7). There are three
main points of focus: (i) Instead of considering the scenario where the saturation rate
is equal to zero, the authors explore the more general case when the saturation rate
is greater than zero. (ii) Show that the Hopf bifurcation points of the system are
significantly more complex than those in [56]; (iii) Use the first component of the pos-
itive equilibrium as the bifurcation parameter, rather than the mortality rate of the
hunter population and the diffusion coefficient. The findings aim to provide a clearer
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Figure 5. τ = 1.615: Large delay leads to the extinction of predator.

Figure 6. Numerical simulations of a system with parameters in a
stable homogenous equilibrium solution. The left: component u; the
right: component v.

Figure 7. Simulations of the Hopf bifurcating spatially homogeneous
periodic solutions of system using numerical methods with parameters.

explanation of the mechanism underlying the creation of spatiotemporal patterns in
hunter-prey interactions in ecology.

2.4.1. Investigation of the impact of quadratic and linear mortality on herd behaviour.
Singh and Banerjee [57] investigate the impact of quadratic and linear mortality on
herd behaviour in a hunter-prey scenario. According to the nonspatial study, the sys-
tem with increasing linear mortality is wiped out, whereas the system with quadratic
mortality coexists. The hunter-prey system with linear mortality in a spatiotemporal
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Figure 8. (a) Dynamics of preys (u) and predators (v) in the nonspa-
tial domain of the model and (b) dynamics of preys (u) and predators
(v) in the nonspatial domain of the model if we select the quadratic
death rate for predator population. Other parameter values are β = 0.8
and γ = 0.01.

model exhibits four essential dynamics, including stable, smooth oscillatory, intermit-
tent chaos, and chaos encompassing the majority of the space (Figure8) .

The non-Turing design is regular and smooth, and it expands with time, result-
ing in a chaotic pattern in both the prey and hunter populations (Figure9). This
circumstance does not appear to have a Turing design. The system with quadratic
mortality, on the other hand, demonstrates diffusive induced instability, resulting in
Turing designs. We get several kinds of diffusive patterns when we change the death
rate, such as mixed patterns and patchy patterns, implying that there is a spot design
replication, where the prey is in a segregated zone with low density and the leftover
area has a high density. The spot-stripe pattern transforms into spots as the ratio
of diffusion coefficients increases, implying that the prey and hunter populations are
converging (Figure10 - 11). Individuals’ adaptability for the two species within their
surroundings can help the preys and hunters work together more effectively.

Lu et al. [58] investigated an eco-epidemiological model with time delay that ad-
dressed the hunter’s gestation time. In this scenario, the hunter population is in-
fected with a contagious disease, and infected hunters may recover from the disease
and become susceptible once more. The local stability of all feasible equilibria and
the occurrence of Hopf bifurcations at without disease and coexistence equilibria are
established, respectively, by inspecting reated characteristic equations. Sufficient re-
quirements for the global stability of the coexistence equilibrium, the sickness-free
equilibrium, and the hunter-extinct equilibrium of the system are determined using
Lyapunov functionals and LaSalle’s invariance principle, respectively.

Alidousti [59] investigated the effects of harvesting hunters and scavengers as well
as the impact of fractional derivative on a prey-hunter scavenger model. In the inte-
rior equilibria, boundedness, positivity of solutions, as well as equilibria stability and
Hopf bifurcation are investigated. After a given sum, it is found that fractional deriv-
ative promotes chaotic system stability. The results of the inquiry were confirmed by
numerical simulation, which showed that harvesting hunter and fractional derivative
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Figure 9. One-dimensional non-Turing dynamic patterns of the
model at time moment τ = 2500: solid blue line for prey and dashed
red line for predator. (a) m = 0.47, (b) m = 0.46, (c) m = 0.45 and (d)
m = 0.434. Other parameter values are β = 0.8, γ = 0.01 and D = 1.0.

cuts became the reason for beefing and consistency in this model. It has been ob-
served that chaos is absent in this ecological model, and it has been established that
fractional order plays a critical part in this incidence.

Bezabih et al. [60] established a susceptible-infected prey and hunter of eco-epidemiological
model based on physiologically significant and significant assumptions. Every possi-
ble equilibrium point has been calculated. The stability of endemic and disease-free
equilibrium points is investigated on a global and local scale. In a simulation research,
it was discovered that prey species are declining due to viral disease, yet this works in
conjunction with the hunter’s ability to effectively consume the prey, resulting in a rise
in the hunter. When infective prey was completely consumed by hunters, susceptible
prey had no chance of being infected by infective prey. As a result of the irresistible
disease wiping out the susceptible prey, the prey-hunter system stabilises for a while.

Under zero-flux boundary conditions and non-zero initial conditions, Singh and
Dubey [61] built a diffusive hunter-prey model with hunting cooperation in hunters and
Holling type IV functional response. The authors investigated both spatiotemporal
and non-spatial models in depth, focusing on potential pattern formation scenarios
in the diffusive hunter-prey model with hunting cooperation among hunters. The
authors initially identified the comparison domain in the space of control parameters
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Figure 10. Two-dimensional non-Turing dynamic patterns of the
model for prey (upper panel) and predator (lower panel) at time mo-
ment τ = 2500. (a) and (d) m = 0.46, (b) and (e) m = 0.45, (c) and
(f) m = 0.434. Other parameter values are β = 0.8, γ = 0.01 and
D = 1.0.

and obtained the requirement for diffusive instability. The control parameters in
this study are the dispersion coefficient ratio and the hunting cooperation coefficient.
We investigate the rise and types of spatial patterns of the system using extensive
numerical simulations and parameter values from the Turing region. Model simulation
has been divided into two categories: spatial and non-spatial domains. The impact of
hunting collaboration in hunters, as well as the hunters’ carrying capacity, has been
highlighted. The increase in hunting cooperation in hunters helps them to survive in
non-spatial space, according to numerical simulation. Hunting collaboration among
hunters plays a critical role in coexistence in the spatial space. We acquire many forms
of diffusive patterns by varying the values of the cooperation coefficient, for example,
mixed pattern, stripe pattern, and patchy pattern. According to populace dynamics,
there is a pattern production (spot) for preys, implying that the preys are distributed
with low density and the remaining area is dense, implying that the preys have isolated
themselves in small gatherings over a large area and are protected. Hunters’ spot
development passes on that with hunting cooperation, the hunters are dispersed and
constrained, but they persist. Big African hunters like lions (Panthera leo), cheetahs
(Acinonyx jubatus), and leopards (Panthera pardus) consistently predate ungulates
two times their mass with the risk of injury or death to the hunter during prey
capture, but they can undoubtedly be overwhelmed by cooperative hunting, which
could improve hunting success rates [62].
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Figure 11. Two-dimensional Turing dynamic patterns of the model
(if we select the quadratic death rate for predator population) for prey
(upper panel) and predator (lower panel) at time moment τ = 2500.
(a) and (d) m = 0.93, (b) and (e) m = 0.97, (c) and (f) m = 1.0. Other
parameter values are β = 0.8, γ = 0.01 and D = 0.08.

3. Research gaps and future directions for research

During the last two decades, most of the research in ecology is based on local
linear stability, existence, Hopf-Bifurcation, and global Stability of the model. Some
researchers used Turing ideas for the temporal prey- predator model. Though Turing’s
patterns have the scope in biological study especially for prey-predator, for study the
behavior of group or individual on land or in oceans. Till now all the previous research
and researcher used only the temporal study of the prey-predator system but in future
we can study the spatiotemporal prey-predator system with the reaction-diffusion part
and the effect of time delay. However, as we look to the future, an exciting avenue
emerges for delving into the intricate interplay between space and time. This involves
the incorporation of reaction-diffusion mechanisms and the exploration of time-delay
effects in spatiotemporal prey-predator systems. By extending our analytical frame-
works to encompass both spatial and temporal dimensions, we stand to gain a deeper
understanding of the intricate dynamics governing ecological systems. As the bound-
aries of ecological research continue to expand, embracing these complexities promises
to uncover novel insights that will enrich our grasp of the natural world.

4. Conclusion

In conclusion, the study of Prey-Predator systems within the realm of ecology
has unveiled a dynamic and intricate interplay between species that has captivated
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researchers for decades. The past decade has witnessed remarkable progress in under-
standing these systems, particularly in the context of various behavioral adaptations
exhibited by both prey and predators. Through an extensive review of research papers
from the last ten years, it is evident that the incorporation of behavioral dynamics
has enriched our comprehension of these interactions and shed light on the nuances
that shape ecosystems.

Behavioral adaptations in prey, such as defensive mechanisms and foraging strate-
gies, have been shown to significantly influence their survival and reproductive success.
These adaptations are not only integral to the survival of prey individuals but also
have cascading effects on the structure of entire communities. Meanwhile, preda-
tor behaviors encompassing hunting tactics, movement patterns, and decision-making
processes have been found to intricately coevolve with those of their prey. The inter-
dependence between these behaviors forms a complex web of interactions, dictating
the ebb and flow of populations within ecosystems.

Furthermore, the integration of technological advancements, such as advanced
tracking and modeling techniques, has permitted a more nuanced exploration of these
behavioral dynamics. These tools have enabled researchers to observe real-time in-
teractions in unprecedented detail and to develop more accurate predictive models,
enhancing our ability to anticipate the outcomes of prey-predator dynamics under
various scenarios.

However, it is apparent that there remain gaps in our understanding, suggesting
exciting avenues for future research. Exploring the impact of anthropogenic factors,
climate change, and habitat alteration on these intricate relationships is of paramount
importance. Additionally, delving deeper into the molecular and genetic underpin-
nings of behavioral adaptations could provide insights into the mechanisms driving
evolutionary change in these systems.

In summation, the past decade has demonstrated that behavioral adaptations are
central to the functioning of Prey-Predator systems in ecology. This review has high-
lighted the multifaceted nature of these interactions, showcasing the delicate balance
that sustains ecosystems. As we continue to unravel the mysteries of the natural
world, it is imperative that we recognize the significance of behavioral adaptations in
shaping the intricate tapestry of life on Earth. Through continued interdisciplinary
collaboration and innovative research, we are poised to uncover even more profound
insights into the fascinating dynamics of Prey-Predator interactions in the years to
come.
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