DOI QR코드

DOI QR Code

REGULARITY FOR SOLUTIONS OF FIRST ORDER EVOLUTION EQUATIONS OF VOLTERRA TYPE

  • Jinsoo Hwang (Department of Mathematics Education, College of Education, Daegu University)
  • 투고 : 2024.06.03
  • 심사 : 2024.07.09
  • 발행 : 2024.09.30

초록

In this paper we study the semilinear first order evolution problems of Volterra type with Lipschitz continuous nonlinearities. Using the variational formulation of problems due to Dautray and Lions [6], we have proved the fundamental results on existence, uniqueness and continuous dependence of solutions. Especially in the proof of the regularity we have used the double regularization method. Applications to nonlinear partial integro-differential equations are given.

키워드

참고문헌

  1. G. Chen and R. Grimmer, Semigroups and integral equations, J. Integ. Eq. 2 (1980), 133-154.
  2. G. Chen and R. Grimmer, Integral equations as evolution equations, J. Diff. Eq. 45 (1982), 53-74.
  3. B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angrew. Math. Phys. 18 (1967), 199-208.
  4. G. Da Prato and M. Iannelli, Existence and regularity for a class of integrodifferential equations of parabolic type, J. Math. Anal. Appl 112 (1985), 35-55.
  5. G. Da Prato and M. Iannelli, Volterra Integro-differential Equations in Banach Spaces and Applications, Pitman Research Notes in Mathematics Series 190, Longman Scientific and Technical, 1989.
  6. R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Evolution Problems I, Springer-Verlag, 1992.
  7. W. Desch and W. Schappacher, A semigroup approach to integrodifferential equations in Banach spaces, J. Integ. Eq. 10 (1985), 99-110.
  8. J. Hwang and S. Nakagiri, Optimal control problems for the equation of motion of membrane with strong viscosity, J. Math. Anal. Appl. 321 (2006), 327-342.
  9. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag Berlin Heidelberg New York, 1971.
  10. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, II, Springer-Verlag Berlin Heidelberg New York, 1972.
  11. R. K. Miller, An integrodifferential equation for rigid heat conductor with memory, J. Math. Anal. Appl. 66 (1978), 331-332.
  12. J. W. Nunziato, On heat conduction in meterials with memory, Quart. Appl. Math. 29 (1971), 187-204.
  13. R. Nagel and E. Sinestrari, Inhomogeneous Volterra integrodifferential equations for Hille-Yoshida operators, in "Functional Analysis", Lecture Notes in Pure and Applied Mathematics, Vol.150, 51-70, Marcel Dekker, New York, 1994.