DOI QR코드

DOI QR Code

트랜지스터의 온도 계수를 고려한 커패시터리스 디램의 설계 최적화

Design Optimization of Capacitor-less DRAM using zero-temperature coefficient point

  • 김경희 ;
  • 김경민 ;
  • 김영환 ;
  • 임종범 ;
  • 최규호 ;
  • 강인만 ;
  • 윤영준
  • Kyung Hee Kim (Department of Electronic Engineering, Andong National University) ;
  • Kyeong Min Kim (Department of Electronic Engineering, Andong National University) ;
  • Yeong Hwan Kim (Department of Electronic Engineering, Andong National University) ;
  • Jong Beom Im (Department of Electronic Engineering, Andong National University) ;
  • Gyu Ho Choi (Department of Electronic Engineering, Andong National University) ;
  • In Man Kang (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Young Jun Yoon (Department of Electronic Engineering, Andong National University)
  • 투고 : 2024.09.13
  • 심사 : 2024.09.24
  • 발행 : 2024.09.30

초록

본 논문에서는 차세대 메모리 기술로 주목받고 있는 커패시터리스 디램(one-transistor DRAM, 1T-DRAM)을 소자의 설계 최적화에 대해 다룬다. 기존 커패시터기반 DRAM의 한계를 해결하고자, 비대칭 듀얼 게이트 구조를 사용하여 보유 시간 및 성능을 향상시키는 방향성을 제시한다. ZTC(Zero-temperature coefficient) 지점을 1.25 V로 설정하여 온도 변화에 따른 성능 저하를 최소화하였다. 다양한 온도(300K~400K)에서 전류-전압 특성을 분석하여, ZTC 지점에서의 메모리 특성이 온도에 안정적으로 동작하는 것을 확인하였으며, 고온에서도 신뢰성 있는 동작을 보장하는 설계가 가능함을 입증하였다. 이를 통해 1T-DRAM 소자는 높은 신뢰성과 고효율을 갖춘 메모리 기술로서, 차세대 메모리 소자 개발에 중요한 기여를 할 수 있다.

This paper addresses the design optimization of capacitorless DRAM(one-transistor DRAM., 1T-DRAM), which has gained attention as a next-generation memory technology. To overcome the limitations of conventional capacitor-based DRAM, an asymmetric dual-gate structure is proposed to enhance retention time and overall performance. The zero-temperature coefficient (ZTC) point is set at 1.25 V to minimize performance degradation due to temperature variations. Current-voltage characteristics were analyzed at various temperatures (300K-400K), confirming stable memory operation at the ZTC point, even under temperature fluctuations. The proposed design demonstrates reliable operation at high temperatures, proving the potential for high-efficiency, highly reliable memory technology. As a result, the 1T-DRAM device can make a significant contribution to the development of next-generation memory devices.

키워드

과제정보

This work was supported by a grant from 2024 Research Fund of Andong National University.

참고문헌

  1. Md. H. R. Ansari and J. Singh, "Capacitorless 2T-DRAM for Higher Retention Time and Sense Margin," IEEE Trans. Electron Devices, vol.67, no.3, pp.902-906, 2020. DOI: 10.1109/TED.2020.2963995. 
  2. A. Biswas and A. M. Ionescu, "1T Capacitor-Less DRAM Cell Based on Asymmetric Tunnel FET Design," IEEE J. Electron Devices Soc., vol.3, no.3, pp.217-222, 2015. DOI: 10.1109/JEDS.2014.2382759. 
  3. J. H. Bae, J. W. Back, M. W. Kwon, J. H. Seo, K. Yoo, S. Y. Woo, K. Park, B. G. Park, and J. H. Lee, "Characterization of a Capacitorless DRAM Cell for Cryogenic Memory Applications,"IEEE Electron Device Lett., vol.40, no.10, pp.1614-1617, 2019. DOI: 10.1109/LED.2019.2933504. 
  4. R. K. Nirala, A. S. Roy, S. Semwal, N. Rai, and A. Kranti, "Architectural evaluation of programmable transistor-based capacitorless DRAM for high-speed system-on-chip applications," Jpn. J. Appl. Phys., vol.62, no.1040, 2023. DOI: 10.35848/1347-4065/acb0db. 
  5. J. S. Shin, H. Choi, H. Bae, J. Jang, D. Yun, E. Hong, D. H. Kim, and D. M. Kim, "Vertical-Gate Si/SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage," IEEE Electron Device Lett., vol.33, no.2, pp.134-136, 2012. DOI: 10.1109/LED.2011.2174025. 
  6. J. H. Seo, Y. J. Yoon, E. Yu, W. Sun, H. Shin, I. M. Kang, J. H. Lee, and S. Cho, "Fabrication and Characterization of a Thin-Body Poly-Si 1T DRAM With Charge-Trap Effect," IEEE Electron Device Lett., vol.40, no.4, pp.566-569, 2019. DOI: 10.1109/LED.2019.2901003. 
  7. S. H. Lee, W. D. Jang, Y. J. Yoon, J. H. Seo, H. J. Mun, M. S. Cho, J. Jang, J. H. Bae, and I. M. Kang, "Polycrystalline-Silicon-MOSFET-Based Capacitorless DRAM With Grain Boundaries and Its Performances," IEEE Access, vol.9, pp.50281-50290, 2021. DOI: 10.1109/ACCESS.2021.3068987. 
  8. S. H. Lee, J. Park, Y. J. Yoon, and I. M. Kang, "Capacitorless One-Transistor Dynamic RandomAccess Memory with Novel Mechanism: SelfRefreshing," Nanomaterials, vol.14, no.2, 2024. DOI: 10.3390/nano14020179. 
  9. S. H. Lee, J. Park, S. R. Min, G. U. Kim, J. Jang, J. H. Bae, S. H. Lee, and I. M. Kang, "3-D stacked polycrystalline-silicon-MOSFET-based capacitorless DRAM with superior immunity to grain-boundary's influence," Sci Rep, vol.12, p.14455, 2022. DOI: 10.1038/s41598- 
  10. Z. D. Prijic, S. S. Dimitrijev, and N. D. Stojadinovic, "The determination of zero temperature coefficient point in CMOS transistors," Microelectron. Reliab., vol.32, no.6, pp.769-773, 1992. DOI: 10.1016/0026-2714(92)90041-I. 
  11. L. M. Camillo, J. A. Martino, E. Simoen, and C. Claeys, "The temperature mobility degradation influence on the zero temperature coefficient of partially and fully depleted SOI MOSFETs," Microelectron. J., vol.37, no.9, pp.952-957, 2006. DOI: 10.1016/j.mejo.2006.01.008. 
  12. T. H. Tan and A. K. Goel, "Zero-temperaturecoefficient biasing point of a fully-depleted SOI MOSFET," Microw. Opt. Technol. Lett., vol.37, no.5, pp. 366-370, 2003. DOI: 10.1002/mop.10920.