DOI QR코드

DOI QR Code

Navigating Ethical AI: A Comprehensive Analysis of Literature and Future Directions in Information Systems

AI와 윤리: 문헌의 종합적 분석과 정보시스템 분야의 향후 연구 방향

  • Jinyoung Min (Department of Industrial Security, Chung-Ang University)
  • 민진영 (중앙대학교 산업보안학과)
  • Received : 2024.07.31
  • Accepted : 2024.08.26
  • Published : 2024.09.30

Abstract

As the use of AI becomes a reality in many aspects of daily life, the opportunities and benefits it brings are being highlighted, while concerns about the ethical issues it may cause are also increasing. The field of information systems, which studies the impact of technology on business and society, must contribute to ensuring that AI has a positive influence on human society. To achieve this, it is necessary to explore the direction of research in the information systems field by examining various studies related to AI and ethics. For this purpose, this study collected literature from 2020 to the present and analyzed their research topics through researcher coding and topic modeling methods. The analysis results categorized research topics into AI ethics principles, ethical AI design and development, ethical AI deployment and application, and ethical AI use. After reviewing the literature in each category to grasp the current state of research, this study suggested future research directions for AI ethics in the field of information systems.

AI의 사용이 일상 생활의 많은 부분에서 현실화 되어감에 따라 AI가 가져오는 긍정적인 기회와 혜택이 주목 받는 한편, AI가 초래할 수 있는 윤리적 문제들에 대한 염려도 커지고 있다. 정보시스템 분야는 기술이 비즈니스와 사회에 미치는 영향을 연구하는 분야로서 AI가 인류 사회에 바람직한 영향을 미칠 수 있도록 기여해야 한다. 따라서 AI와 윤리 관련한 다양한 연구들을 살펴보고 정보시스템 분야의 연구가 나아가야 할 방향을 탐색할 필요가 있다. 본 연구는 이를 위해 먼저 2020년부터 현재까지의 문헌을 수집하여 연구자의 코딩과 토픽 모델링을 통해 연구 주제를 범주화 하였다. 분석 결과 AI 윤리 원칙, 윤리적 AI 디자인 및 개발, 윤리적 AI 도입 및 활용, 윤리적 AI 사용의 네 가지로 연구 주제를 범주화하고, 각 범주 별로 문헌을 고찰하여 연구 현황을 짚은 후, 정보 시스템 분야에서의 AI 윤리에 대한 향후 연구 방향을 제언하였다.

Keywords

Acknowledgement

이 논문은 2022년도 중앙대학교 학술연구비 지원에 의한 것임

References

  1. 김효은. (2022). 인공지능과 윤리. 커뮤니케이션북스. 
  2. 손화철. (2023). ChatGPT와 연구윤리. 지식경영연구, 24(3), 1-15. 
  3. 윤소라. (2020). The impact of new technology on ethics in accounting: Opportunities, threats, and ethical concerns. 경영학연구, 49(4), 983-1010. 
  4. 이소현, 김민수, 김희웅. (2019). 워라밸 이슈 비교 분석: 한국과 미국. 정보시스템연구, 28(2), 153-179. 
  5. 이위, 황경화, 최지애, 권오병. (2023). 거대언어모델의 차별문제 비교 연구. 지능정보연구, 29(3), 125-144. 
  6. 최지애. (2023). 거대언어모델(LLM)이 인식하는 공연예술의 차별 양상 분석: ChatGPT를 중심으로. 지능정보연구, 29(3), 401-418. 
  7. 홍태호, 니우한잉, 임강, 박지영. (2018). LDA를 이용한 온라인 리뷰의 다중 토픽별 감성분석: TripAdvisor 사례를 중심으로. 정보시스템연구, 27(1), 89-110.
  8. Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V. I., & Consortium, P. Q. (2020). Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20, 1-9. 
  9. Amugongo, L. M., Kriebitz, A., Boch, A., & Lutge, C. (2023). Operationalising AI ethics through the agile software development lifecycle: A case study of AI-enabled mobile health applications. AI and Ethics, 1-18. 
  10. Ashok, M., Madan, R., Joha, A., & Sivarajah, U. (2022). Ethical framework for artificial intelligence and digital technologies. International Journal of Information Management, 62, 102433. 
  11. Attard-Frost, B., De los Rios, A., & Walters, D. R. (2023). The ethics of AI business practices: A review of 47 AI ethics guidelines. AI and Ethics, 3(2), 389-406. 
  12. Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J., & Rahwan, I. (2018). The moral machine experiment. Nature, 563(7729), 59-64. 
  13. Ayling, J., & Chapman, A. (2022). Putting AI ethics to work: Are the tools fit for purpose? AI and Ethics, 2(3), 405-429. 
  14. Baird, A., & Maruping, L. M. (2021). The next generation of research on IS use: A theoretical framework of delegation to and from agentic IS artifacts. MIS Quarterly, 45(1), 315-341. 
  15. BBC (2015). Google apologises for Photos app's racist blunder. Retrieved from https://www.bbc.com/news/technology-33347866 
  16. Belisle-Pipon, J. C., Monteferrante, E., Roy, M. C., & Couture, V. (2023). Artificial intelligence ethics has a black box problem. AI & Society, 1-16. 
  17. Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Managing artificial intelligence. MIS Quarterly, 45(3), 1433-1450. 
  18. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993-1022. 
  19. Borenstein, J., & Howard, A. (2021). Emerging challenges in AI and the need for AI ethics education. AI and Ethics, 1, 61-65. 
  20. Char, D. S., Abramoff, M. D., & Feudtner, C. (2020). Identifying ethical considerations for machine learning healthcare applications. The American Journal of Bioethics, 20(11), 7-17. 
  21. Choung, H., David, P., & Ross, A. (2023). Trust and ethics in AI. AI & Society, 38(2), 733-745. 
  22. Coghlan, S., Miller, T., & Paterson, J. (2021). Good proctor or "big brother"? Ethics of online exam supervision technologies. Philosophy & Technology, 34(4), 1581-1606. 
  23. Dave, T., Athaluri, S. A., & Singh, S. (2023). ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Frontiers in Artificial Intelligence, 6, 1169595. 
  24. Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24-42. 
  25. Du, S., & Xie, C. (2021). Paradoxes of artificial intelligence in consumer markets: Ethical challenges and opportunities. Journal of Business Research, 129, 961-974. 
  26. Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. Machine Learning and the City: Applications in Architecture and Urban Design, 535-545. 
  27. Haussermann, J. J., & Lutge, C. (2022). Community-in-the-loop: Towards pluralistic value creation in AI, or-why AI needs business ethics. AI and Ethics, 1-22. 
  28. Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 30(1), 99-120. 
  29. Heaven, W. D. (2020). Predictive policing algorithms are racist. They need to be dismantled. MIT Technology Review, Retrieved from https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/  1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/
  30. Hermann, E. (2022). Leveraging artificial intelligence in marketing for social good-An ethical perspective. Journal of Business Ethics, 179(1), 43-61. 
  31. Hunkenschroer, A. L., & Luetge, C. (2022). Ethics of AI-enabled recruiting and selection: A review and research agenda. Journal of Business Ethics, 178(4), 977-1007. 
  32. Huriye, A. Z. (2023). The ethics of artificial intelligence: Examining the ethical considerations surrounding the development and use of AI. American Journal of Technology, 2(1), 37-44. 
  33. Jakesch, M., Bucinca, Z., Amershi, S., & Olteanu, A. (2022). How different groups prioritize ethical values for responsible AI. Paper presented at the Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. 
  34. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. 
  35. Koniakou, V. (2023). From the "rush to ethics" to the "race for governance" in Artificial Intelligence. Information Systems Frontiers, 25(1), 71-102. 
  36. Lauer, D. (2021). You cannot have AI ethics without ethics. AI and Ethics, 1(1), 21-25. 
  37. Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. Paper presented at the Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 
  38. Masters, K. (2023). Ethical use of artificial intelligence in health professions education: AMEE Guide No. 158. Medical Teacher, 45(6), 574-584. 
  39. Mikalef, P., Conboy, K., Lundstrom, J. E., & Popovic, A. (2022). Thinking responsibly about responsible AI and 'the dark side'of AI. European Journal of Information Systems, 31(3), 257-268. 
  40. Mirbabaie, M., Brendel, A. B., & Hofeditz, L. (2022). Ethics and AI in information systems research. Communications of the Association for Information Systems, 50(1), 38. 
  41. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264-269. 
  42. Morley, J., Kinsey, L., Elhalal, A., Garcia, F., Ziosi, M., & Floridi, L. (2023). Operationalising AI ethics: Barriers, enablers and next steps. AI & Society, 1-13. 
  43. Munn, L. (2023). The uselessness of AI ethics. AI and Ethics, 3(3), 869-877. 
  44. Murtarelli, G., Gregory, A., & Romenti, S. (2021). A conversation-based perspective for shaping ethical human-machine interactions: The particular challenge of chatbots. Journal of Business Research, 129, 927-935. 
  45. Nedlund, E. (2019). Apple Card is accused of gender bias. Here's how that can happen. CNN Businesss, Retrieved from https://edition.cnn.com/2019/11/12/business/apple-card-gender-bias/index.html 
  46. Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010). Automatic evaluation of topic coherence. Paper presented at the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. 
  47. Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., & Nguyen, B. P. T. (2023). Ethical principles for artificial intelligence in education. Education and Information Technologies, 28(4), 4221-4241. 
  48. Prem, E. (2023). From ethical AI frameworks to tools: A review of approaches. AI and Ethics, 3(3), 699-716. 
  49. Ryan, M., & Stahl, B. C. (2020). Artificial intelligence ethics guidelines for developers and users: Clarifying their content and normative implications. Journal of Information, Communication and Ethics in Society, 19(1), 61-86. 
  50. Sanderson, C., Douglas, D., Lu, Q., Schleiger, E., Whittle, J., Lacey, J., Newnham, G., Hajikowicz, S., Robinson, C., & Hansen, D. (2023). AI ethics principles in practice: Perspectives of designers and developers. IEEE Transactions on Technology and Society, 4(2), 171-187. 
  51. Schelble, B. G., Lopez, J., Textor, C., Zhang, R., McNeese, N. J., Pak, R., & Freeman, G. (2024). Towards ethical AI: Empirically investigating dimensions of AI ethics, trust repair, and performance in human-AI teaming. Human Factors, 66(4), 1037-1055. 
  52. Schiff, D. (2022). Education for AI, not AI for education: The role of education and ethics in national AI policy strategies. International Journal of Artificial Intelligence in Education, 32(3), 527-563. 
  53. Schultz, M. D., & Seele, P. (2023). Towards AI ethics' institutionalization: Knowledge bridges from business ethics to advance organizational AI ethics. AI and Ethics, 3(1), 99-111. 
  54. Siau, K., & Wang, W. (2020). Artificial intelligence (AI) ethics: Ethics of AI and ethical AI. Journal of Database Management, 31(2), 74-87. 
  55. Slimi, Z., & Carballido, B. V. (2023). Navigating the ethical challenges of artificial intelligence in higher education: An analysis of seven global AI ethics policies. TEM Journal, 12(2), 590-602. 
  56. Stahl, B. C. (2022). Responsible innovation ecosystems: Ethical implications of the application of the ecosystem concept to artificial intelligence. International Journal of Information Management, 62, 102441. 
  57. Stahl, B. C., & Eke, D. (2024). The ethics of ChatGPT-Exploring the ethical issues of an emerging technology. International Journal of Information Management, 74, 102700. 
  58. Teixeira da Silva, J. A., & Tsigaris, P. (2023). Human-and AI-based authorship: Principles and ethics. Learned Publishing, 36(3), 453-462. 
  59. Van de Poel, I. (2020). Embedding values in artificial intelligence (AI) systems. Minds and Machines, 30(3), 385-409. 
  60. Wang, C., Liu, S., Yang, H., Guo, J., Wu, Y., & Liu, J. (2023). Ethical considerations of using ChatGPT in health care. Journal of Medical Internet Research, 25, e48009. 
  61. Wong, R. Y., Madaio, M. A., & Merrill, N. (2023). Seeing like a toolkit: How toolkits envision the work of AI ethics. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW1), 1-27. 
  62. Zhang, J., & Zhang, Z. M. (2023). Ethics and governance of trustworthy medical artificial intelligence. BMC Medical Informatics and Decision Making, 23(1), 7.