DOI QR코드

DOI QR Code

침전 및 부상 공정에서 PAC 응집제 종류별 PO43- 이온 제거 효율 비교

Comparison of the PO43- Ion Removal Efficiency Using Various PAC Coagulant Types in Sedimentation and Flotation Processes

  • 최정학 (부산가톨릭대학교 환경공학과) ;
  • 김주섭 ((주)이에스티그린) ;
  • 박종원 (부산가톨릭대학교 소방방재학과) ;
  • 민성기 (한국무기응집제공업협동조합) ;
  • 이혜연 (한국무기응집제공업협동조합) ;
  • 이창한 (부산가톨릭대학교 환경행정학과)
  • 투고 : 2024.07.24
  • 심사 : 2024.08.24
  • 발행 : 2024.09.30

초록

In the present study, we aimed to determine the optimal polyaluminum chloride (PAC) dosage in raw water based on the PO43--P concentration using PAC coagulants with aluminum concentrations of 10%, 12%, and 17%. The correlation between the Al/P molar ratio and the removal efficiency of aggregated Al-PO43--P flocs was evaluated using sedimentation and flotation processes. As the PO43--P concentration in the raw water increased, the Al/P molar ratio gradually decreased from 6.14 to 1.98. The Al/P molar ratio of PAC formulations with higher aluminum contents showed a decreasing trend in the following order: PAC 17% < PAC 12% < PAC 10%. An increase in the Al/P molar ratio led to a slight increase in the average particle size of Al-PO43--P flocs formed during the coagulation process. At optimal Al/P molar ratios, PO43--P removal efficiency ranged from approximately 80% to 93% for both the coagulation/precipitation and coagulation/flotation processes. The coagulation/flotation process exhibited a slightly higher PO43--P removal efficiency than coagulation/precipitation.

키워드

과제정보

2022년 성과공유형 공통기술개발사업 공통기술 R&D(2단계) 사업(RS-2022-00187244)의 지원을 받아 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Ahn, K. B., Lee, C. H., 2011, Flotation efficiency of the DAF pump system for mixing and coagulation conditions in raw drinking water, J. Environ. Sci. Intern., 20, 639-645.
  2. Chen, Y., Wu, Y., Wang, D., Li, H., Wang, Q., Liu, Y., Peng, L., Yang, Q., Li, X., Zeng, G., Chen, Y., 2018, Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge, Chem. Eng. J., 334, 1351-1360.
  3. Choi, J. H., Yoon, G. G., Lee, C. H., 2023, Evaluation of phosphorus removal efficiency at various coagulation conditions using polyaluminum chloride with different Al contents, J. Environ. Sci. Int., 32, 731-739.
  4. Eduah, J. O., Nartey, E. K., Abekoe, M. K., Henriksen, S. W., Andersen, M. N., 2020, Mechanism of orthophosphate (PO4-P) adsorption onto different biochars, Environ. Technol. Innov., 17, 100572.
  5. Han, H. J., Moon, B. H., 2012, Effect of rapid mixing intensity and coagulant dosages on phosphorus removal by coagulation, Clean Technol., 18, 404-409.
  6. Han, S. W., Kang, L. S., 2015, Comparison of Al(III) and Fe(III) coagulants for improving coagulation effectiveness in water treatment, J. Korean Soc. Environ. Eng., 37, 325-331.
  7. Han, S. W., Kang, L. S., 2010, Removal mechanism of phosphorus in wastewater effluent using coagulation process, J. Korean Soc. Environ. Eng. 32, 774-779.
  8. Jang, Y. J., Jung, J. H., Ahn, K. H., Lim, H. M., Kim, W. J., 2020, Applicability of Al/P (Aluminium/ Phosphorus) ratio in SeDAF process for enhanced phosphorus removal, J. Korean Soc. Environ. Eng., 42, 539-547.
  9. Jang, M. H., Choi, Y, H., Jung, H. J., Jeong, Y. H., Kwak, D. H., 2021, Feasibility evaluation on single-collector collision model to separate microplastics in micro bubble flotation process, J. Korean Soc. Environ. Eng., 43, 10-19.
  10. Kajjumba, G. W., Marti, E. J., 2022, A Review of the application of cerium and lanthanum in phosphorus removal during wastewater treatment: Characteristics, mechanism, and recovery, Chemosphere, 309, 136462.
  11. Kim, J. M., Ahn, B. Y., Kim, S. H., Kim, D. S., Kim, Y.H., Choi, Y. S., Yoon, S. H., Bae, S. J., Cho, Y. G., Kim, E. S., Song, M. S., Na, J. B., 2014, Analysis and assessment of removal efficiency for T-P in sewage treatment, J. Korean Soc. Environ. Anal., 17, 73-81.
  12. Kim, J. O., Chung, J., 2014, Implementing chemical precipitation as a pretreatment for phosphorus removal in membrane bioreactor-based municipal wastewater treatment plants, KSCE J. Civil Eng., 18, 956-963.
  13. Kim, M. K. Moon, B., Kim, T. K., Zoh, K. D., 2015, A Study on production & removal of microcystin, taste & odor compounds from algal bloom in the water treatment processes, Korean J. Public Health, 52, 33-42.
  14. Lee, B. H., Park, J. H., Cha, H. Y., Maeng, S. K., Song, K. G., 2012, Effects of dolomite addition on phosphorus removal by chemical coagulation of secondary treated effluent, J. Korean Soc. Water Wastewater, 26, 443-451.
  15. Lee, S. K., Kwak, Y. W., Hong, S. H., 2019, Effects of TDS on formation of THMs in drinking water treatment, J. Korean Soc. Water Wastewater, 33, 225-234.
  16. Park, H. S., Lee, S. Y., 2000, Effect of coagulants and separation methods on algal removal in water treatment process, J. Korean Soc. Environ. Eng., 22, 279-289.
  17. Park, W. C., Lee, M. A., Sung, I. W., 2014, Phosphorus removal from advanced wastewater treatment process using PAC, J. Korean Soc. Environ. Eng., 36, 96-102.
  18. Sarvajayakesavalu, S., Lu, Y., Withers, P. J. A., Pavinato, P. S., Pan, G., Chareonsudjai, P., 2018. Phosphorus recovery: A Need for an integrated approach. Ecosyst. Health Sust., 4, 48-57.
  19. Toor, U. A., Shin, H., Kim, D. J., 2019, Mechanistic insights into nature of complexation between aluminum and phosphates in polyaluminum chloride treated sludge for sustainable phosphorus recovery, J. Ind. Eng. Chem., 71, 425-434.