DOI QR코드

DOI QR Code

방사성 핵종 CS 처리된 토양에 유기물 함량이 배추의 생육에 미치는 영향

Effect of Organic Matter Content in Soil Treated with Radionuclides Cesium on the Growth of Chinese Cabbage

  • Yeon Ju Choi (Department of Horticulture Bioscience, Pusan National University) ;
  • Eun Young Bae (Department of Horticulture Bioscience, Pusan National University) ;
  • Sang Rim Kim (Department of Horticulture Bioscience, Pusan National University) ;
  • Mohammad Faraaz Ahmed (Department of Horticulture Bioscience, Pusan National University) ;
  • Jum-Soon Kang (Department of Horticulture Bioscience, Pusan National University)
  • 투고 : 2024.07.29
  • 심사 : 2024.08.28
  • 발행 : 2024.09.30

초록

This study aimed to analyze the effects of cesium (Cs) treatment concentrations and organic matter on the growth of Chinese cabbage plants. The growth responses of cabbage to the Cs treatment varied depending on the concentration of Cs and the organic matter content in the soil. Higher concentrations of Cs in the soil presented a detrimental effect on cabbage growth. Specifically, increased Cs levels led to a reduction in leaf number, leaf area, chlorophyll content, and fresh and dry weights. However, an increase in the soil organic matter content positively affected the fresh and dry weights. These trends were particularly pronounced in Chinese cabbage plants grown for 80 days after treatment. Soil organic matter proved to effectively mitigate the negative effects of Cs on plant growth. Incorporating organic matter into Cs-contaminated soils can, therefore, enhance the immobilization of radioactive isotopes and contribute to the stabilization of contaminated soils, making it a useful strategy for managing radioactive contamination.

키워드

과제정보

본 논문은 산업통상자원부의 재원으로 사용후 핵연료 관리 핵심기술 개발사업단 및 산업부 한국에너지기술평가원의 지원을 받아 수행된 연구 사업의 일환으로 수행되었습니다(RS-2021-KP002656). 이에 감사드립니다.

참고문헌

  1. Chibowski, S., Zygmunt, J., 2002, The influence of the sorptive properties of organic soils on the migration rate of 137Cs, J. Environ. Radioact., 61, 213-223.
  2. Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., Yamazawa, H., 2011, Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere, Journal of Nuclear Science and Technology, 48, 1129-1134.
  3. Cornell, R. M., 1993, Adsorption of cesium on minerals: A Review, J. Radioanal. Nucl. Chem., 171, 483-500.
  4. Cunningham, S. D., Berti, W. R., 1993, Remediation of contaminated soils with green plants: The case of heavy metals and radioactive contaminants, Environ. Sci. Technol., 27, 850-855.
  5. Davis, J. C., Eberline, A., 1997, Radiological properties and environmental behavior of cesium-137, J. Environ. Radioact., 37, 91-103.
  6. Ehlken. S., Kirchner, G., 2002, Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: A Review, J. Environ. Radioact., 58, 97-112.
  7. Fedorkova, M. V., Pakhnenko, E. P., Sanzharov, N. I., 2012, Chemical forms of radioactive strontium interaction with organic matter of different soil types, Moscow University Soil Science Bulletin, 67, 133-136.
  8. Gupta, D. K., Walther, C., Shchur, A., Valkho, V., Vinogradov, D., Valko, V., 2019, Impact of cesium contamination on soil and plant health. Environ. Res., 172, 345-352.
  9. Huang, J., Zhao, L., 2017, Phytoremediation of radioactive contaminants: A Review, Journal of Environmental Management, 203, 123-133.
  10. Khan, M. S., Ahmed, N., 2019, Bioremediation of radioactive contaminated soils using plants, J. Hazard. Mater., 377, 253-261.
  11. Kim, H. J., Lee, J. S., Park, S. K., Kim, M. H., Choi, H. J., 2020, The effects of cesium on plant growth and development, Journal of Environmental Science and Health, 55, 1234-1245.
  12. Lee, K. W., Yoon, H. S., 2010, Biological impact of cesium-137 and health consequences: A Review, Int. J. Radiat. Biol., 86, 1095-1107.
  13. Lee, S. H., Kim, Y. J., Kang, J. H., Jeon, E. K., 2018, Translocation and accumulation of cesium in different plant species, Agricultural Sciences, 7, 165-174.
  14. MAFRA, 2022, The cabbage cultivation area in Korea, Agricultural statistics yearbook, Ministry of Agriculture, Food and Rural Affairs, 350-370.
  15. Ministry of Agriculture, Food and Rural Affairs, 2022, Agricultural statistics yearbook.
  16. Nedelkoska, T. V., Doran, P. M., 2000, Accumulation of heavy metals and radioactive elements by plants, Plant and Soil, 224, 105-115.
  17. Park, S., Kim, J., Lee, H., 2019, The impact of C-scontaminated soil on microbial activity and plant growth, J. Environ. Radioact., 102, 123-130.
  18. Panday, A., Kumar, V., 2020, The role of plants in the remediation of radioactive contaminated soils, Environmental Science and Pollution Research, 27, 30412-30423.
  19. Rafferty, B., Dawson, D. E., Colgan, P. A., 1994, Seasonal variations in the transfer of 137Cs and 40K to pasture grass and its ingestion by grazing animals, Sci. Total Environ., 145, 125-134.
  20. Smolders, E., Sweeck, L., Merckx, R., Cremers, A., 1997, Cationic interactions in radiocaesium uptake from solution by spinach, J. Environ. Radioact., 34, 161-170.
  21. Smolders, E., Kiebooms, L., Buysee, J., Merckx, R., 1996, 137Cs uptake in spring wheat (Triticum aestivum L. cv Tonic) at varying K supply, The effect in solution culture, Plant and Soil, 181, 205-209.
  22. Steinhauser, G., Brandl, A., Johnson, T. E., 2014, Comparison of the Chernobyl and Fukushima nuclear accidents: A Review of the environmental impacts, Sci. Total Environ., 470-471, 800-817.
  23. Soudek, P., Valenova, S., Vanek, T., Roch, B., 2004,. Laboratory analyses of 137Cs uptake by sunflower, reed and poplar, Chemosphere, 55, 1081-1087.
  24. Sugiura, Y., Yoshihara, T., Matsumoto, S., Takahashi, H., 2016, Radiocesium accumulation properties of Chengiopanax sciadophylloides, J. Environ. Radioact., 151, 250-257.
  25. Tang, S., Kim, W. K., Yang, S. I., 2011, Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil, J. Hazard. Mater., 198, 188-197.
  26. With, G. D., Bezhenar, R., Maderich, V., Timmermans, C., Ievdin, I., Iosjpe, I., Jung, K. T., Qiao, F., Perianez, R., 2021, Development of a dynamic food chain model for assessment of the radiological impact from radioactive releases to the aquatic environment, J. Environ. Radioact., 223, 1-8.