DOI QR코드

DOI QR Code

The influence of Omicron on vaccine efficacy and durability: a neurology perspective

  • Jethendra Kumar Muruganantham (Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education) ;
  • Ramakrishnan Veerabathiran (Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education)
  • Received : 2023.11.09
  • Accepted : 2024.07.01
  • Published : 2024.07.31

Abstract

Omicron variants present new challenges when it comes to understanding their impact on vaccines, antiviral strategies, and possible neurological consequences. This article describes the characteristics of the Omicron variant, its epidemiology, the efficacy of vaccines and monoclonal antibodies, and its association with lymphoid depletion. We also explore the neurological implications of Omicron, focusing on its association with encephalopathy and encephalitis. There are unique challenges associated with the Omicron variant, which is characterized by distinct mutations and increased transmissibility. For a better understanding of the effects of this disease and developing strategies to combat its spread, especially concerning neurological complications, ongoing research is necessary.

Keywords

References

  1. Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol 2020;31:454-70.
  2. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33.
  3. Raja TK, Kumar MB, Divyaparvathy J, et al. A cross-sectional study on Omicron-knowledge and practice among COVID recovered adults in Chengalpattu district. J Commun Dis 2022;54:54-9.
  4. Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging 2020;47:1275-80.
  5. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62.
  6. Roshni J, Vaishali R, Ganesh KS, et al. Multi-target potential of Indian phytochemicals against SARS-CoV-2: a docking, molecular dynamics and MM-GBSA approach extended to Omicron B.1.1.529. J Infect Public Health 2022;15:662-9.
  7. CNCB-NGDC Members and Partners. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res 2022;50(D1):D27-38.
  8. Walensky RP, Walke HT, Fauci AS. SARS-CoV-2 variants of concern in the United States: challenges and opportunities. JAMA 2021;325:1037-8.
  9. Bazargan M, Elahi R, Esmaeilzadeh A. OMICRON: virology, immunopathogenesis, and laboratory diagnosis. J Gene Med 2022;24:e3435.
  10. Jansen L, Tegomoh B, Lange K, et al. Investigation of a SARS-CoV-2 B.1.1.529 (Omicron) variant cluster: Nebraska, November-December 2021. MMWR Morb Mortal Wkly Rep 2021;70:1782-4.
  11. Kumar S, Karuppanan K, Subramaniam G. Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: a comparative sequence and structural-based computational assessment. J Med Virol 2022;94:4780-91.
  12. Fan Y, Li X, Zhang L, et al. SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther 2022;7:141.
  13. Cao Y, Yisimayi A, Bai Y, et al. Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Res 2021;31:732-41.
  14. Dong Y, Dai T, Liu J, et al. Coronavirus in continuous flux: from SARS-CoV to SARS-CoV-2. Adv Sci (Weinh) 2020;7:2001474.
  15. Lee NY, Lee YW, Hong SM, et al. SARS-CoV-2 Omicron variant causes brain infection with lymphoid depletion in a mouse COVID-19 model. Lab Anim Res 2023;39:8.
  16. World Health Organization. Classification of Omicron (B. 1.1. 529): SARS-CoV-2 variant of concern. Geneva: World Health Organization; 2021.
  17. Rana R, Kant R, Huirem RS, et al. Omicron variant: current insights and future directions. Microbiol Res 2022;265:127204.
  18. Guo Y, Han J, Zhang Y, et al. SARS-CoV-2 Omicron variant: epidemiological features, biological characteristics, and clinical significance. Front Immunol 2022;13:877101.
  19. World Health Organization. COVID-19 weekly epidemiological update, edition 134, March 16 2023. Geneva: World Health Organization; 2023.
  20. Ganesan M, Renganathan J, Vasuki V, et al. S gene drop-out predicts super spreader H69del/V70del mutated SARS-CoV-2 virus. Asian Pac J Trop Med 2021;14:236-7.
  21. Gowrisankar A, Priyanka TM, Banerjee S. Omicron: a mysterious variant of concern. Eur Phys J Plus 2022;137:100.
  22. Noori M, Nejadghaderi SA, Arshi S, et al. Potency of BNT 162b2 and mRNA-1273 vaccine-induced neutralizing antibodies against severe acute respiratory syndrome-CoV-2 variants of concern: a systematic review of in vitro studies. Rev Med Virol 2022;32:e2277.
  23. Torjesen I. COVID restrictions tighten as omicron cases double every two to three days. BMJ 2021;375:n3051.
  24. Ferguson N, Ghani A, Hinsley W, et al. Report 50: Hospitalisation risk for Omicron cases in England [Internet]. London: Imperial College London; 2021 [cited 2024 May 10]. Available from: https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2021-12-22-COVID-19-Report-50.pdf
  25. Lau JJ, Cheng SM, Leung K, et al. Real-world COVID-19 vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nat Med 2023;29:348-57.
  26. Bloomfield LE, Ngeh S, Cadby G, et al. SARS-CoV-2 vaccine effectiveness against Omicron variant in infection-naive population, Australia, 2022. Emerg Infect Dis 2023;29:1162-72.
  27. Khan NA, Al-Thani H, El-Menyar A. The emergence of new SARS-CoV-2 variant (Omicron) and increasing calls for COVID-19 vaccine boosters: the debate continues. Travel Med Infect Dis 2022;45:102246.
  28. Zhang X, Wu S, Wu B, et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther 2021;6:430.
  29. GeurtsvanKessel CH, Geers D, Schmitz KS, et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol 2022;7:eabo2202.
  30. Wang Y, Ma Y, Xu Y, et al. Resistance of SARS-CoV-2 Omicron variant to convalescent and CoronaVac vaccine plasma. Emerg Microbes Infect 2022;11:424-7.
  31. Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 2022;185:467-84.
  32. Lin DY, Xu Y, Gu Y, et al. Effectiveness of bivalent boosters against severe Omicron infection. N Engl J Med 2023;388:764-6.
  33. Vitiello A, Porta R, Pianesi L, et al. COVID-19 pandemic: vaccine and new monoclonal antibodies, point of view. Ir J Med Sci 2022;191:487-8.
  34. Hentzien M, Autran B, Piroth L, et al. A monoclonal antibody stands out against omicron subvariants: a call to action for a wider access to bebtelovimab. Lancet Infect Dis 2022;22:1278.
  35. Takashita E, Kinoshita N, Yamayoshi S, et al. Efficacy of antibodies and antiviral drugs against COVID-19 Omicron variant. N Engl J Med 2022;386:995-8.
  36. Vitiello A, Ferrara F, Auti AM, et al. Advances in the omicron variant development. J Intern Med 2022;292:81-90.
  37. Wen K, Cai JP, Fan X, et al. Broad-spectrum humanized monoclonal neutralizing antibody against SARS-CoV-2 variants, including the Omicron variant. Front Cell Infect Microbiol 2023;13:1213806.
  38. Sabbatucci M, Vitiello A, Clemente S, et al. Omicron variant evolution on vaccines and monoclonal antibodies. Inflammopharmacology 2023;31:1779-88.
  39. Iketani S, Liu L, Guo Y, et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 2022;604:553-6.
  40. Hirotsu Y, Omata M. Detection of the Omicron BA.2.75 subvariant in Japan. J Infect 2023;86:e5-7.
  41. Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, editors. Molecular biology of the cell. 4th ed. New York (NY): Garland Science; 2002. Chapter 24.
  42. Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022;612:758-63.
  43. Lee YJ, Seok SH, Lee NY, et al. Murine coronavirus disease 2019 lethality is characterized by lymphoid depletion associated with suppressed antigen-presenting cell functionality. Am J Pathol 2023;193:866-82.
  44. Garcia C, Compagnon B, Ribes A, et al. SARS-CoV-2 Omicron variant infection affects blood platelets, a comparative analysis with Delta variant. Front Immunol 2023;14:1231576.
  45. LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the United States for COVID-19 or multisystem inflammatory syndrome. JAMA Neurol 2021;78:536-47.
  46. Tetsuhara K, Akamine S, Matsubara Y, et al. Severe encephalopathy associated with SARS-CoV-2 Omicron BA.1 variant infection in a neonate. Brain Dev 2022;44:743-7.
  47. Lu L, Chen L, Wang P, et al. Neurological complications during the omicron COVID-19 wave in China: a cohort study. Eur J Neurol 2024;31:e16096.
  48. Sahin A, Karadag-Oncel E, Buyuksen O, et al. The diversity in the clinical features of children hospitalized with COVID-19 during the nonvariant, Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) variant periods of SARS CoV-2: caution for neurological symptoms in Omicron variant. J Med Virol 2023;95:e28628.
  49. Nikbakht F, Mohammadkhanizadeh A, Mohammadi E. How does the COVID-19 cause seizure and epilepsy in patients?: the potential mechanisms. Mult Scler Relat Disord 2020;46:102535.
  50. Dang TQ, La DT, Tran TN. Myeloencephalitis as the only presentation of Omicron SARS-CoV-2 infection. BMJ Case Rep 2022;15:e251922.