DOI QR코드

DOI QR Code

Numerical Simulation of Quasi-Spherical, Supersonic Accretion Flows - Code and Tests

  • Siek Hyung (Department of Earth Science Education, Chungbuk National University) ;
  • Seong-Jae Lee (Department of Earth Science Education, Chungbuk National University)
  • 투고 : 2024.08.05
  • 심사 : 2024.08.22
  • 발행 : 2024.08.31

초록

We study quasi-spherical, supersonic accretion flows around black holes using high-accuracy numerical simulations. We describe a code, the Lagrangian Total Variation Diminishing (TVD), and a remap routine to address a specific issue in the Advection Dominated Accretion Flow (ADAF) that is, appropriately handling the angular momentum even near the inner boundary. The Lagrangian TVD code is based on an explicit finite difference scheme on mass-volume grids to track fluid particles with time. The consequences are remapped on fixed grids using the explicit Eulerian finite-difference algorithm with a third-order accuracy. Test results show that one can successfully handle flows and resolve shocks within two to three computational cells. Especially, the calculation of a hydrodynamical accretion disk without viscosity around a black hole shows that one can conserve nearly 100% of specific a ngular momentum in one-and two-dimensional cylindrical coordinates. Thus, we apply this code to obtain a numerically similar ADAF solution. We perform simulations, including viscosity terms in one-dimensional spherical geometry on the non-uniform grids, to obtain greater quantitative consequences and to save computational time. The error of specific angular momentum in Newtonian potential is less than 1% between r~10rs and r~104 rs, where rs is sink size. As Narayan et al. (1997) suggested, the ADAFs in pseudo-Newtonian potential become supersonic flows near the black hole, and the sonic point is rsonic~5.3rg for flow with α =0.3 and γ=1 .5. Such simulations indicate that even the ADAF with γ=5/3 is differentially rotating, as Ogilvie (1999) indicated. Hence, we conclude that the Lagrangian TVD and remap code treat the role of viscosity more precisely than the other scheme, even near the inner boundary in a rotating accretion flow around a nonrotating black hole.

키워드

과제정보

We would like to acknowledge support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00277151). S.-J. L. is grateful to Prof. Ryu of UNIST, who provided the original TVD code.

참고문헌

  1. Collella, P., & Woodward, P.R., 1984, The piecewise parabolic method (PPM) for gas-dynamical simulations, Journal Computational Physics, 54, 174-201. https://doi.org/10.1016/0021-9991(84)90143-8
  2. Godunov, S.K., 1959, Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Matematiceskij Sbornik, 47, 271-306.
  3. Harten, A., 1983, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, 49, 357-393. https://doi.org/10.1016/0021-9991(83)90136-5
  4. Harten, A., Engquist, B., Osher, S., & Chakravarthy, S.R., 1987, Uniformly high order accurate essentially non-oscillatory schemes, III, Journal of Computational Physics, 71, 231-303. https://doi.org/10.1016/0021-9991(87)90031-3
  5. Jiang, G.-S., & Shu, C.-W., 1996, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126, 202-228. https://doi.org/10.1006/jcph.1996.0130
  6. Igumenshchev, I.V., Chen, X., & Abramowicz, M.A., 1996, Accretion discs around black holes: two-dimensional, advection-cooled flows, Monthly Notices of the Royal Astronomical Society, 278, 236-250. https://doi.org/10.1093/mnras/278.1.236
  7. Igumenshchev, I.V., & Abramowicz, M.A., 1999, Rotating accretion flows around black holes: convection and variability, Monthly Notices of the Royal Astronomical Society, 303, 309-320. https://doi.org/10.1046/j.1365-8711.1999.02220.x
  8. Igumenshchev, I.V., & Abramowicz, M.A., 2000, Two-dimensional models of hydrodynamical accretion flows into black holes, The Astrophysical Journal Supplement Series, 130, 463-484. https://doi.org/10.1086/317354
  9. Lee, S.-J., Ryu, D., & Chattopadhyay, I., 2011, Quasi-spherical, time-dependent viscous accretion flow: one-dimensional results, The Astrophysical Journal, 728:142, 1-13. https://doi.org/10.1088/0004-637X/728/1/1
  10. Lee, S.-J., Chattopadhyay, I., Kumar, R., Hyung, S., & Ryu, D., 2016, Simulations of viscous accretion flow around black holes in a two-dimensional cylindrical geometry, The Astrophysical Journal, 831:33, 1-22. https://doi.org/10.3847/0004-637X/831/1/1
  11. LeVeque, R.J., 1998, Nonlinear Conservation Laws and Finite Volume Methods for Astrophysical Fluid Flow, 27th Saas-Fee Advanced Course Lecture Notes.
  12. Liu, X.-D., Osher, S., & Chan, T., 1994, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115, 200-212. https://doi.org/10.1006/jcph.1994.1187
  13. Longair, M.S., 1994, High Energy Astrophysics (London: Cambridge Univ. Press).
  14. Molteni, D., Ryu, D., & Chakrabarti, S.K., 1996, Numerical simulations of standing shocks in accretion flows around black holes: A comparative study, The Astrophysical Journal, 470, 460-468. https://doi.org/10.1086/177877
  15. Narayan, R., & Yi, I., 1994, Advection-dominated accretion: A self-similar solution, The Astrophysical Journal, 428, L13-L16. https://doi.org/10.1086/187381
  16. Narayan, R., Kato, S., & Honma F., 1997, Global structure and dynamics of advection-dominated accretion flows around black holes, The Astrophysical Journal, 476, 49-60. https://doi.org/10.1086/303591
  17. Ogilvie, G.I., 1999, Time-dependent quasi-spherical accretion, Monthly Notices of the Royal Astronomical Society, 306, L9-L13. https://doi.org/10.1046/j.1365-8711.1999.02637.x
  18. Paczynski, B., & Wiita, P.J., 1980, Thick accretion disks and supercritical luminosities, Astronomy and Astrophysics, 88, 23-31.
  19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P., 1992, Numerical Receipes in Fortran (London: Cambridge Univ. Press).
  20. Pringle, J.E., 1981, Accretion discs in astrophysics, Annual Review of Astronomy and Astrophysics, 19, 137-162. https://doi.org/10.1146/annurev.aa.19.090181.001033
  21. Roe, P.L., 1981, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 43, 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  22. Ryu, D., & Jones, T.W., 1995a, Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow, The Astrophysical Journal, 442, 228-258. https://doi.org/10.1086/175437
  23. Ryu, D., & Jones, T.W., & Frank, A., 1995b, Numerical magnetohydrodynamics in astrophysics: algorithm and tests for multi-dimensional flow, The Astrophysical Journal, 452, 785-796. https://doi.org/10.1086/176347
  24. Ryu, D., Yun, H.S., & Cheo, S., 1995c, A multi-dmensional magnetohydrodynamic code in cylindrical geometry, Journal of the Korean Astronomical Society, 28, 2, 223-243.
  25. Shakura, N.L., & Sunyaev, R.A., 1973, Black holes in binary systems. Observational appearance., Astronomy and Astrophysics, 24, 337-355. https://doi.org/10.1007/978-94-010-2585-0_13
  26. Strang, G., 1968, On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis, 5, 506-517. https://doi.org/10.1137/0705041
  27. Tassoul J.-L., 1978, Theory of Rotating Stars. Princeton Univ. Press, Princeton.
  28. Van Leer, B., 1979, Towards the ultimate conservative difference scheme V. A Second-order sequel to Godunov's method, Journal of Computational Physics, 32, 101-136. https://doi.org/10.1016/0021-9991(79)90145-1