
J. Korean Earth Sci. Soc., v. 45, no. 4, p. 292303, August 2024

https://doi.org/10.5467/JKESS.2024.45.4.292

ISSN 1225-6692 (printed edition)

ISSN 2287-4518 (electronic edition)

Numerical Simulation of Quasi-Spherical, Supersonic Accretion Flows
- Code and Tests

Siek Hyung and Seong-Jae Lee*

Department of Earth Science Education, Chungbuk National University, Chungbuk 28644, Korea

Abstract: We study quasi-spherical, supersonic accretion flows around black holes using high-accuracy numerical

simulations. We describe a code, the Lagrangian Total Variation Diminishing (TVD), and a remap routine to address a

specific issue in the Advection Dominated Accretion Flow (ADAF) that is, appropriately handling the angular momentum

even near the inner boundary. The Lagrangian TVD code is based on an explicit finite difference scheme on mass-volume

grids to track fluid particles with time. The consequences are remapped on fixed grids using the explicit Eulerian finite-

difference algorithm with a third-order accuracy. Test results show that one can successfully handle flows and resolve

shocks within two to three computational cells. Especially, the calculation of a hydrodynamical accretion disk without

viscosity around a black hole shows that one can conserve nearly 100% of specific a ngular momentum in one-and two-

dimensional cylindrical coordinates. Thus, we apply this code to obtain a numerically similar ADAF solution. We perform

simulations, including viscosity terms in one-dimensional spherical geometry on the non-uniform grids, to obtain greater

quantitative consequences and to save computational time. The error of specific angular momentum in Newtonian potential

is less than 1% between r~10rs and r~10
4
rs, where rs is sink size. As Narayan et al. (1997) suggested, the ADAFs in

pseudo-Newtonian potential become supersonic flows near the black hole, and the sonic point is rsonic~5.3rg for flow with

α =0.3 and  =1 .5. Such simulations indicate that even the ADAF with  =5/3 is differentially rotating, as Ogilvie (1999)

indicated. Hence, we conclude that the Lagrangian TVD and remap code treat the role of viscosity more precisely than

the other scheme, even near the inner boundary in a rotating accretion flow around a nonrotating black hole.
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1. Introduction

One of the most important aspects of numerical

simulations is minimizing numerical errors due to

code. Many studies have been done for several years,

and many kinds of schemes have been developed to

reduce numerical errors. Of those schemes, high-order,

conservative, upwind differencing schemes have

proven very efficient in solving compressible hydrodynamic

equations. These methods based on the so-called

Rieman solution generally depend on estimating mass,

momentum, and energy fluxes across cell boundaries.

Several examples include Godunov’s scheme (Godunov

1959), MUSCL scheme (Van Leer 1979), Roe Scheme

(Roe 1981), TVD scheme (Harten 1983), PPM

scheme (Collella & Woodward 1984), ENO scheme

(Harten et al. 1987) and WENO (Liu et al. 1994;

Jiang & Shu 1996).

Meanwhile, numerical simulations to solve compressible

hydrodynamic equations with viscosity terms were

performed by Igumenshchev et al. (1996) and

Igumenshchev & Abramowicz (1999 & 2000). They

mainly examined the features of Advection Dominated

Accretion Flow (ADAF). The code work must follow

up angular momenta more accurately, even close to

the inner boundary, to study the features of ADAF

near the edge of a black hole. Most of the angular

momentum is transferred outwards near the inner

region, and the flow is absorbed in a black hole.

Especially the conservation of angular momenta in

curved geometrical coordinates has been one of the

issues to be solved in the Eulerian scheme since

azimuthal momentum equations are not easy to
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decouple from the rest of the equations. In addition to

this, since both boundary conditions influence the

numerical calculation, including viscosity terms, caution

must be applied to follow up on angular momenta

accurately. Therefore, we have built a code that

implements Lagrangian Total Variation Diminishing

(TVD) scheme and remapping to reduce the errors in

calculating the angular momentum.

Lagrangian TVD scheme consists of Lagrangian and

TVD schemes: the former is a scheme to track a

particular fluid particle with time, while the latter is a

Diminishing Total Variation that is designed by Ryu et

al. (1995a; 1995b; 1995c) based on Harten (1983).

Since the azimuthal momentum equation in the

Lagrangian scheme is decoupled from the rest of the

equations, it is believed to be very efficient in

conserving angular momenta. TVD scheme was

known to resolve shocks within a few cells, e.g., two

to four cells. Hence, we have built up the Lagrangian

TVD to obtain two strong points: (1) the Lagrangian

method can follow angular momentum as accurately

as possible, and (2) the TVD scheme can detect shocks

sharply. This paper will show that the Lagrangian

TVD and remap code help conserve the angular

momentum in Eulerian equations. Furthermore, the

code can be drawn well the analytical self-similar

solutions of ADAF because the viscosity terms in

azimuthal momentum equations are treated separately

using an implicit method.

In §2, we introduce the implementation of Lagrangian

TVD and remap code, including the operator splitting,

to answer the needs of people who do numerical

calculations. We describe the process of building up

the Lagrangian TVD code in detail, in which the

results are mapped into fixed points by remap routine

with high order accuracy. We will show that the code

can correctly handle the nature of hydrodynamical

flows, capturing shocks and contact discontinuities

through the shock tube test. Moreover, we will simulate

the rotating flow around a black hole where the

accretion shock is formed to see how accurately this

code can conserve angular momentum in one and two-

dimensional cylindrical geometry. We will investigate the

differences between the results from Lagrangian TVD

and remap with those by Molteni et al. (1996, hereafter,

MRC96) with the same initial conditions. In §3, we

describe the time-dependent equations of ADAFs

based on Narayan & Yi (1994, hereafter, NY94) and

compare the consequences from the numerical

simulation with the analytical self-similar solutions

derived from the equations at steady state. We will

show that the code can draw the analytical self-similar

solution well by following up the angular momentum.

Summary and Discussions are given in §4.

2. Numerical Scheme and
Test Results

In this section, we explain the process of constructing

the Lagrangian TVD and remap. To see the conservation

of angular momentum, test results in one and two-

dimensional cylindrical geometries are shown in uniform

grid cells. Especially, we describe the construction of

non-uniform grids: the calculation with viscosity terms

was made on the non-uniform grids, which is believed

to be very efficient in reducing the computing time.

2.1. One-Dimensional Hydrodynamical Equations

for Lagrangian TVD

We describe the hydrodynamical evolution with

equations in which the effects of cooling and heating

are ignored. In multi-dimensional geometry, the ideal

hydrodynamical equations by Collella & Woodward

(1984) are written in a conservative form as follows:

(1)

(2)

(3)

where the state vectors, τ, v and E are a specific

volume, a radial velocity and a total energy per unit

volume, respectively. The density ρ, the internal

energy e and the pressure p are to be derived from

conserved quantities via


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ρ = 1/τ, e = E − v
2
/2, p = ( − 1)ρe (4)

where v, p and vp are the flux functions. The pressure,

, where cs is the adiabatic sound speed. The

spatial distance r in a coordinate is related to a mass

m via

(5)

where β = 0, 1, 2 are planar, cylindrical, or spherical

symmetry, respectively depending on the cases. The

function r (m, t) satisfies the ordinary differential

equation dr/dt = v (m, t).

2.2. One-Dimensional Functioning Code and

Remap

We consider the planar geometry, that is, the case of

β = 0. The first step to build a one-dimensional

function is to find eigenvalues, the right and left

eigenvectors of Jacobians A(q). Three eigenvalues of

A(q) are in non-increasing order

, , . (6)

The quantities a1, a2, and a3 represent the three speeds

whose information is propagated by hydrodynamic

wave and entropy mode. The following eigenvectors

are found from the Jacobian matrix of the system of

Eqs. (1)-(3).

, ,

(7)

The left eigenvectors, which are orthonormal to the

right eigenvectors, Ll · Rm = δlm are

(8)

(9)

(10)

The fluxes in the Lagrangian TVD is built using

eigenvalues and eigenvectors with flow quantities at

the cell center. First of all, the m(r)-flux is calculated

using the one-dimensional functioning code, where the

mass m(r) in a coordinate is related to a spatial

distance r as in Eq. (5). In calculating the m(r)-flux,

we define an updated state vector which includes the

effects of the source terms at each time step as

follows:

(11)

Fluxes in m(r)-coordinate are calculated as follows:

, (12)

, (13)

, (14)

,

(15)

, (16)

(17)

gk,i = sign( )max[0, min{| |, 2sign( )},

min{2| |, sign( )}], (18)
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gk,i = sign( )max[0, min{| |, sign( )}],

(19)

gk,i = sign( )max[0, min{| |+sign( )},

{2| |, 2sign( )}], (20)

, (21)

(22)

 = 0.3 (23)

Equation (18) is a superbee flux limiter of high-

resolution limiters in the Lagrangian TVD scheme.

The idea of the flux limitation is to reduce the

magnitude of a numerical flux to avoid oscillation

near a discontinuity. In addition to Eq. (18), we have

tested the code with two more flux limiters which are

minmode and monotonized central- difference limiter

(MC-flux limiter). The former method is to compare

the two slopes and to choose the smaller one in

magnitude. The code has been tested with Eq. (19) for

the minmode flux limiter. The latter is sharpening the

resolution of discontinuities which may be achieved

with other limiters as in Eq. (20) that does not reduce

the slope as severely as minmod near a discontinuity.

Since the above Eqs. (1)-(3) are integrated by

Lagrangian TVD which tracks fluid particle variation

with time, the density, radial velocity, and energy in

Lagrangian coordinates are remapped onto a fixed

Eulerian coordinate. At the beginning of Lagrangian

step, the Lagrangian and Eulerian zones coincide.

After a Lagrangian step, the Lagrangian zone moves

to the updated coordinate with flow velocity vr as

follows:

ξi = ξo + vr∆t (24)

where ξi is in a new coordinate of the Lagrangian

zone boundary, while ξo is in an old coordinate of the

Lagrangian zone boundary. The Lagrangian zone

coincides with the Eulerian zone after the Lagrangian

zone has shifted with updated distribution vr∆t. All the

interpolations for remap have been performed in the

volume coordinate r
β+1

/(β + 1) with the third-order

accuracy, e.g., β = 0, 1, and 2 for planar, cylindrical,

and spherical geometry (Collella & Woodward 1984).

The calculation has been performed on the uniform

grids for the hydrodynamical steps, in which the grid

size is constant and relatively small for high resolution,

whereas on the non-uniform grids for the equations of

ADAF, the grid size increases exponentially and is set

as follows:

dr(i) = dr(1) × b
(i−1)

(25)

r(i) = dr(i) × (b
i
− 1)/(b − 1), (26)

where dr(i) is the grid size of i
th
 cell, dr(1) is the first

grid size, b is the increment factor and r(i) is the

distance of the i
th
 cell from the center. Since grid sizes

increase exponentially, small grid sizes near the inner

boundary can get more accurate results, while bigger

grid sizes near the outer boundary can make long-

length box sizes with fewer grid cells. Tests showed

that since the calculation for ADAF requires high

resolution in uniform grids to get better numerical

results, it takes a very long time to reach the steady

state. To save the computational time and to get the

qualitative results, our calculation has been done on a

non-uniform grid with only 780 cells to achieve the

same resolution as was possible with more than 12000

cells in uniform grids of the same box size. Especially,

the non-uniform grids are very useful for numerical

simulation to calculate the equations which include

viscosity terms because they allow us to see the high-

resolution effects of calculating angular momentum

around a black hole.

2.3. Two-Dimensional Hydrodynamical Step

for Cylindrical Geometry

Two-dimensional code can be decomposed into one-

dimensional functioning codes through a Strang-type

directional splitting (Strang 1968). For two-dimensional

cylindrical coordinate, the calculation of r-path has
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been done on the cylindrical coordinate, while the

calculation of z-path has been done on the plane

parallel coordinate (Ryu et al. 1995a & 1995b for

detail).

When the calculation has been done on the cylindrical

coordinate for β = 1, or one-dimensional spherical

geometry for β = 2, the azimuthal momentum equation

is decoupled from Eqs. (1)-(3), respectively. So, it is

possible to handle separately and to conserve the

angular momentum accurately as follows:

(27)

where, .

If there are external forces such as gravity, the

momentum and energy equations will have source

terms, i.e., g in Eq. (2) and vg in Eq. (3). Since self-

gravitation of flow is neglected and g is a body force

depending on r,  and  in Newtonian

potential, whereas  in Paczynsky & Wiita

potential (1980) with Schwarzschild radius rg. If the

calculation has been done on a lower-dimension using

cylindrical or spherical symmetry, the equations must

also include geometric source terms.

The source terms were solved in a source treatment

step using fractional step (splitting) methods, in which

the problem is split into pieces corresponding to the

different processes and a numerical method appropriate

for each separate piece is applied independently. We

used the implicit method to solve the source terms in

one-dimensional geometry, while we used the explicit

method in two-dimensional cylindrical geometry.

2.4. Shock Tube Test

The first step intends to mimic the shock tube test.

We have tested in a computational box size (=1), with

 =5/3, Courant constant Ccour =0.8 and  =0.1. Figure

1 shows three distinct waves in separating regions

with ρl = pl =3 and ρr = pr =1. A shock wave propagates

into the region of lower pressure, across the region of

which the density and pressure jump to higher values

and all of the state variables are discontinuous. We

used a superbee flux limiter, in which shock could

resolve more sharply than the other flux limiters, e.g.,

minmode and MC-flux limiter. A contact discontinuity,

across the region of which the density is again

discontinuous but the velocity and pressure are constant.

To detect the contact discontinuity within a few cells,

we refined or turned on stiffness in a remap routine

which could handle entropy mode. The third wave is

called a rarefaction wave since the density of the gas

is rarefied; all of the state variables are continuous

and there is a smooth transition (LeVeque 1998).

While the straight lines represent the analytical

solutions, the circles show the test results of pressure,

density, and radial velocity at the time step of t =0.2

with 1024 grid cells.

2.5. One-Dimensional Accretion Shock

In a second test, we check the degree of shock

capture activity when the rotating flow is approaching

to the centrifugal barrier in a one-dimensional cylindrical

geometry. Thus, we assume a thin, rotating, adiabatic

accretion flow near the nonrotating central compact

object with Paczynski & Wiita (1980) potential. For a

complete solution of the stationary model, the equations

of energy, momentum, and mass conservation are

necessary. In the case of axisymmetric flow without

viscosity, the azimuthal momentum equation conserves

specific angular momentum at steady state, =0.

Since the equation for the azimuthal momentum can

be decoupled from the rest of the equations, we can

treat it separately.

Figure 1 of Lee et al. (2011), which used this code,

compares analytical and numerical results in a one-

dimensional accretion flow with a standing shock. The

inflow with (ρ, p, vr, l) = (1, 0.0105886, −0.083566,

1.8) is set at the outer boundary and adiabatic index

of  =4/3. The flow is pulled by the gravitational force

of a black hole only at the center of the box and it is

sucked by the sink area, which occupies a space of 3

% or less of the box size. Density and Mach number

are plotted in 2048 grid cells. The solid curves are the

analytical solutions, while the circles represent our

dl
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code simulation results. Note that the shock is

captured nicely within 2 to 3 cells and the results

coincide with the analytical solution fairly well [Fig. 1

of MRC96 for comparison].

2.6. Two-Dimensional Accretion Shock

To see the case of two-dimensional cylindrical geometry

which is constructed by the operator Strang-type splitting

method (Strang 1968), we have tested a standing

shock case in accretion flow as in the above case.

MRC96 pointed out that the shock structure on the

equatorial plane is different in Eulerian TVD and SPH

code because Eulerian TVD has a few percent of

errors in angular momentum [Fig. 3a of MRC96].

Hence, to search for shock structures of the equatorial

plane, we have run the code with the same initial

condition as in MRC96, e.g., vr = −0.068212, sound

speed cs =0.061463, adiabatic index  =4/3 and

specific angular momentum l =1.65. The matter is

supplied from an outer boundary and is absorbed at

the inner edge in the same way as in the one-

dimensional case.

Figure 2 shows the density contour and velocity

fields in the r-z plane. The calculation has been done

with 128×256 cells in a 50×100 box size. The

contour level of the minimum density is 0.0261.

Successive contours have a density ratio of 1.2. The

consequences show a clear presence of the funnel

wall. They show the presence of an oblate spheroidal

shock near the equatorial plane. The shock touches the

equatorial plane roughly at r~24. The inner solid

curve is the location of the funnel wall that is the

surface of vanishing effective potential, while the

outer solid curve is a centrifugal barrier that is

governed by the competition between the centrifugal

force and gravitational force.

When we compare Fig. 2 with Figs. 3a & 3b of

MRC96, the density contour map is similar to Fig.

3(b) of MRC96. It has one shock structure because

the code uses Lagrangian scheme and remap like SPH

code in which the specific angular momentum

conserves strictly. However, the shock position is

similar to Fig. 3(a) of MRC96 because our code used

TVD method in which the shock is resolved sharply.

Fig. 1. Shock tube test. Plots show density (ρ), pressure (p), and radial velocity (v) from the top. (a), (b), and (c) are the results

of plane parallel and cylindrical and spherical geometry for β =0, 1, and 2, respectively. The straight lines show the analytical

solutions, while the open circles represent the results from the code test. The calculation has been done on 512 uniform grid

cells using the superbee flux limiter. The shock is resolved sharply with 2-3 grid cells.



298 Siek Hyung and Seong-Jae Lee

3. Application to Advection 
Dominated Accretion Flow

The viscosity in rotating accretion flows has two

effects. First, it redistributes angular momentum so

that some of the matter spread outwards carrying

angular momentum out. As a result, it allows the rest

of the matter to spiral inwards (Pringle 1981). At the

same time, the viscosity acts as a frictional force,

which results in the dissipation of heat (Longair

1994). Unfortunately, it is very difficult to display the

structure which visualizes the precise role of viscosity

through numerical simulation, especially, near the inner

edge of the black hole because the numerical calculations

with viscosity terms would be affected by boundary

conditions. Moreover, it requires a higher resolution

near the inner boundary to get better results, so it

requires too much computational time to reach the

steady state. However, we have solved these problems

by using the continuous boundary conditions and non-

uniformly or exponentially increasing grid size.

3.1. Time Dependent Equations of ADAF

In the last test, we apply this code to ADAF in

which most of the viscously dissipated energy is

stored as an entropy rather than being radiated.

Assuming an axisymmetric flow where the temperature

of the accreting gas is nearly virialized and the flow

structure is quasi-spherical, the time-dependent equations

for ADAF have been derived from NY94. When the

self-gravitation of gas is ignored, the gas density ρ, its

radial velocity v, angular velocity  and adiabatic

sound speed cs, satisfy the following four differential

equations, namely the continuity equation, the radial

and azimuthal components of the momentum equation,

and the energy equation;

(28)

(29)

(30)

(31)

where, qφ is the viscous force just for the azimuthal

direction and derived from Igumenschev et al. (1996)

based on Tassoul (1978),

. (32)


t
------

1

r

----

r
----- r


 + 0=

  
t

--------------
1

r

----
 r




2 
r

--------------------+ 
l
2

r
3
---- g–

p
r
------–=

dl
dt
---- rq=


t
-----

1

r

----
 r


 p+  
r

------------------------------+ F g–=

q

1

r
---

r
----- rr 

Fig. 2. Density contours and velocity fields in the r-z plane. The big paraboloidal accretion shock touches in the equatorial

plane, at r~24. To compare the results to Figs. 3(a) and 3(b) of MRC96, we used the same initial condition as MRC96 in

128×256 uniform grid cells. The locations of the funnel wall (inner curve) and the centrifugal barrier (outer curve) are superim-

posed by solid curves, respectively.
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The viscous stress tensor component is τφr = 2µDrφ,

while the shear tensor component is .

 is a dynamical viscosity coefficient, which is

described by the α prescription based on Sakura &

Sunyaev (1973),

. (33)

Generally, α is a constant and less than 1. Since we

assume an axisymmetric flow,
 

, we denote the

gas pressure as , the Keplerian angular velocity

as  in Newtonian potential, whereas

 in pseudo-Newtonian potential.

The heat dissipation function in flux form is defined

as follows:

. (34)

Meanwhile, the following internal energy equation

satisfies the total energy Eq. (31).

= Q
+
− Q

−

≡ fµr
2

. (35)

Here, e is the specific internal energy. The middle part

of the Eq. (35) means the difference between the

energy input per unit area due to viscous dissipation

(Q
+
) and the energy loss through radiative cooling

(Q
−
) and those are defined as the right-hand side of

Eq. (35) based on NY94. f is 1 for considering non-

radiative cooling flow only, whereas f will be less

than 1 for assuming radiative cooling. If the flow

reaches a steady state, Eqs. of (28)-(31) become those

of NY94 because
 

 is zero.

For the numerical integration of the above Eqs.

(28)-(31), we divided them into two sub-steps: hydro-

dynamical and viscous steps. The hydrodynamical

sub-step is calculated by using the Lagrangian TVD

and remap routine on one-dimensional spherical geometry

with β =2. Since the viscous sub-step of Eq. (30) is a

system of linear equations and it has nonzero

components, the equation has been transformed into

the following three vectors using an implicit method

in a non-uniform grid;

(36)

(37)

(38)

(39)

where,  is an updated specific angular momenta in

i
th
 cell, while  is former specific angular momenta

in i
th
 cell. Also, µi and Ki are defined as follows;

(40)

(41)

The above linear Eq. (36) is tridiagonal, that is, has

nonzero elements only on the diagonal plus or minus

one column. To get the updated specific angular

momentum, we used a subroutine given by Press et al.

(1992) to solve the tridiagonal matrix. Meanwhile, the

viscously generated energy Q in Eq. (35) is calculated

explicitly.

3.2. Analytical Self-Similar Solutions of ADAF

Based on NY94, we obtained the analytical self-

similar solution from the Eqs. (28)-(31) at the steady

state with adiabatic sound speed as follows:

(42)

(43)
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(44)

(45)

where vK is Keplerian velocity vK =  Since

we consider non-radiative cooling flow only, we have

f = 1,  = ( − )/( − 1) and  ' ≡  /f = . Note that

the angular velocity is zero for  = 5/3 based on the

Eq. of (44).

3.3. Boundary Conditions and Inflow

The numerical simulation in Newtonian potentials

has been performed in a calculation domain which is

located 0  r  3. This corresponds to r = 0rs 10
5
rs,

where rs is a sink size which corresponds to about 3

cells, rs = 2×10
−5

. We have used nonhomogeneous

grids with about 780 cells. The first size of the grid is

1.3×10
−5

 and the increment factor is 1.01. However,

we have used about 490 nonhomogeneous grid cells

for the calculation in Paczynski & Witta (1980)

potentials because flows in pseudo-Newtonian potential

are supersonic flows close to the edge of a black hole.

And it requires longer computational time to reach the

steady state than in Newtonian potentials. Therefore,

the computational domain has been set differently

from the former: the first size of grid is 2.4×10
−4

 and

the sink size is 4×10
−4

. The Schwarzschild’s radius rg

is 4/3×10
−4

. The increment factor is 1.01. Hence, the

calculation domain corresponds to 010
4
rg.

We used the sucking inner boundary condition in

which the flow passes through the inner boundary

freely and there is a negligible influence on the pressure

from the inner layers. The outer boundary condition

should allow the possibility of both outflow and

inflow through the outer boundary. However, in order

to reduce the error due to the dual effect of the outer

boundary, we selected the continuous outer boundary

which allows the possibility of outflow only.

The inflow is steadily injected into the calculation

domain from the position of r~0.95–0.99, which

corresponds to ~5×10
4
rs for Newtonian potentials,

whereas it corresponds to ~5×10
3
rg for pseudo-

Newtonian potentials. Here, we assume that the

supplying matter is coming from an equatorial torus

with Gaussian density distribution and the torus has

Keplerian angular velocity since the position of the

torus is the place where the centrifugal force is

balanced by the gravitational force. Due to the viscous

effect, some of the injected flow will lose angular

momentum and move inwardly, forming an accretion

flow. Another part of inflow with acquired angular

momentum moves outwardly. After a while, the

accretion flow achieves a quasi-stationary condition

and finally, reaches a steady state. Since these flows

show persistent stability, chaotic fluctuations do not

appear anymore with time at any given point.

3.4. Numerical Results

Figure 2 of Lee et al. (2011), which used this code,

shows density (top left), radial velocity & sound speed

(top right), pressure (bottom left) and specific angular

momentum (bottom right) in Newtonian potential. The

sound speed and the radial velocity are shown in the

unit of Keplerian velocity in the position of sink

vK(rs), while the specific angular momentum is shown

in the unit of Keplerian specific angular momentum in

the position of sink lK(rs). The straight lines of density

and pressure match on ρ ∝   and p ∝ . The

straight lines for radial velocity, sound speed, and

specific angular momentum are the analytical self-

similar solutions from the Eqs. of (42)-(45). The

dotted points are the consequences of the numerical

simulation. The physical parameters used in this

simulation are α =0.3,  =4/3 and f =1. Since the

azimuthal component of the momentum equation is

separately treated in this code, it has a strong

advantage in solving the angular momentum accurately

to minimize the errors even near the edge of a black

hole. The error of specific angular momentum is less

than 1 % between r~10rs and r~10
4
rs in a box size

~10
5
rs, where rs is sink size. Especially, the errors

around sink (10rg  r  50rg) excluding the position in

which is influenced by the inner boundary, are less


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than 0.3 %. The bottom right of Fig. 2 represents how

precisely one can calculate the specific angular momentum

with our code.

Lee et al. (2016) extended the analytical solution

including scale height in one dimension to two

dimensions and presented the computational results to

represent the actual situation around a black hole

suggested in the theory. To properly represent analytical

solutions in multi-dimensional spaces, the code must be

able to accurately calculate angular momentum. However,

in the calculations of Igumenshchev et al. (1996), since

the azimuthal momentum equation is not separated

from other equations, it is difficult to separately

handle the conservation of angular momentum even in

the absence of viscosity. Therefore, to follow up the

exact spread of the angular momentum due to

viscosity, Lagrangian TVD and remap, where angular

momentum is 100% conserved in the absence of

viscosity, is very efficient. Figure 2 (shock-free flow)

and Fig. 4 (shocked flow) from Lee et al. (2016)

show how well this code follows up the analytical

solutions even in multi-dimensions using scale height.

These results provide that the code has strong points

of being able to visually and precisely express

theoretical predictions about the structure of the

accretion disk around a black hole through multi-

dimensional numerical calculations.

Figure 3 shows density (top left), radial velocity &

sound speed (top right), pressure (bottom left), and

specific angular momentum (bottom right) in pseudo-

Newtonian potential. We used the same initial flow

conditions as in Narayan et al. (1997) to compare

them, e.g.,  =1.5, α =0.3 and f =1. The straight lines

for the sound speed, the radial velocity, and the

specific angular momentum are the analytical self-

similar solutions, whereas the dashed line in the

bottom right represents Keplerian specific angular

momentum. The slopes for the density and the pressure

are  and . As Narayan et al. (1997) suggested,

the ADAFs in pseudo-Newtonian potential become

supersonic flows close to the black hole. The sonic

point depends on the viscosity parameter α and it

becomes 5.315rg especially for α =0.3. The sonic point

from the numerical consequence represents around the

position r~5.3rg. The features of radial velocity, sound

speed, and specific angular momentum are almost the

same as in Figs. 1 and 2 of Narayan et al. (1997).

Based on their Fig. 2, the specific angular momentum

does not come close to the line of the analytical self-

similar solution between r~10
2
rg and 10

3
rg as in the

bottom right of Fig. 3. Moreover, the point that the

rotation is substantially sub-Keplerian even near the

last stable orbit, r~3rg, is also the same as in our

results.

4. Summary and Discussions

This paper is treated to cover a detailed description

of the development process of the code in response to

the request of researchers studying the theoretical

solution. The main objective of building up Lagrangian

TVD and remap code was to know the precise role of

viscosity in a rotating accretion flow around a black

hole through numerical simulation. Our effort shows

that our code can follow up the angular momentum as

accurately as possible, even near the inner boundary

of a black hole, overcoming improper treatment of

angular momentum close to the inner boundary. As

mentioned in §3, Lagrangian TVD and remap code

have two strong merits: (1) the capacity to resolve

shock sharply and (2) the capability of conserving 100

% of angular momenta in Eulerian equations. It can

accommodate shock structures more efficiently.

Moreover, it is also possible to follow up the angular

momentum variation because the azimuthal momentum

equation is decoupled from the rest of the equations.

The shock tube test in a one-dimensional plane

parallel geometry shows that the present code has a

more precise resolving capability shock structure

within two to three cells. The test in rotating accretion

flows with one-dimensional cylindrical geometry proves

that our code simulation can follow up nicely with the

analytical solution [Fig. 1 of Lee et al. (2011) and Fig.

1 of MRC96 for a comparison]. In two-dimensional

cylindrical tests, the current results also produce a

shock structure of which position in the equatorial

r
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plane is similar to the results of MRC96. Hence, since

we know that the Lagrangian TVD and remap code

help represent the analytical solution, our method

proves beneficial in reducing the possible errors from

mishandling the specific angular momentum when the

viscosity is added to the simulation.

From the simulation of one-dimensional quasi-spherical

geometry, including viscosity terms, we found a better

result near the center, reducing the high computational

time cost by employing non-uniform grids. As in Fig.

2 of Lee et al. (2011), the numerical simulation using

the Newtonian potential shows excellent consequences

closely matching the analytical self-similar solution.

As the theoretical work might suggest, we represent

that the linear, angular momenta of inflow are lost by

viscosity when the flow approaches the center of the

black hole. The results of Lee et al. (2016) show the

role of viscosity even in multi-dimensional coordinates

precisely and provide a clue to analyze various

phenomena observed around black holes, such as jet

and quasi-periodic oscillation (QPO).

The flow in the pseudo-Newtonian potential to

mimic the general relativistic effect shows that the

radial velocity is faster than the flow with the Newtonian

potential. So, the flow becomes a supersonic flow near

the black hole. The flow characteristics depend on the

viscosity parameter α: the smaller α is, the closer the

sonic point to the black hole is. The sonic point at the

position rsonic~5.3rg for α =0.3 and  =1.5 in Fig. 3

matches the earlier conclusion by Narayan et al. (1997).
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