과제정보
이 논문은 동아대학교 교내연구비 지원에 의하여 연구되었음.
참고문헌
- 금융감독원, "금감원, 금융상황 점검회의 개최", 2023.08.24, Available at https://www.fss.or.kr/fss/bbs/B0000188/view.do?nttId=129829&menuNo=200218&cl1Cd=&sdate=&edate=&searchCnd=1&searchWrd=%EC%A0%90%EA%B2%80&pageIndex=3.
- 김명종, 윤우섭, "기업부도 예측 앙상블 모형의 최적화", 경영정보학연구, 제24권, 제1호, 2022, pp. 39-57. https://doi.org/10.14329/isr.2022.24.1.039
- 노정담, 최병구, "불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법", 경영정보학연구, 제24권, 제4호, 2022, pp. 97-118. https://doi.org/10.14329/isr.2022.24.4.097
- 조성임, 김명종, "비대칭 마진 SVM 최적화 모델을 이용한 기업부실 예측모형의 범주 불균형 문제 해결", 경영정보학연구, 제24권, 제4호, 2022, pp. 23-40. https://doi.org/10.14329/isr.2022.24.4.023
- 조용복, 조동우, 최보승, "불균형 시계열 자료를 위한 분류 알고리즘 적용방안: 기업 부도모형을 중심으로", Journal of The Korean Data Analysis Society(JKDAS), 제24권, 제2호, 2022, pp. 639-651.
- 한국은행, "통화정책방향 관련 총재 기자간담회(2023.11)", 2023.11.30, Available at https://www.bok.or.kr/portal/bbs/B0000169/view.do?nttId=10080889&menuNo=200059&pageIndex=1.
- Altman, E. I., "Financial ratios, discriminant analysis and the prediction of corporate bankruptcy", The Journal of Finance, Vol.23, No.4, 1968, pp. 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
- Barboza, F., H. Kimura, and E. Altman, "Machine learning models and bankruptcy prediction", Expert Systems with Applications, Vol.83, 2017, pp. 405-417. https://doi.org/10.1016/j.eswa.2017.04.006
- Buckland, M. and F. Gey, "The relationship between recall and precision", Journal of The American Society for Information Science, Vol.45, No.1, 1994, pp. 12-19. https://doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
- Cateni, S., V. Colla, and M. Vannucci, "A method for resampling imbalanced datasets in binary classification tasks for real-world problems", Neurocomputing, Vol.135, 2014, pp. 32-41. https://doi.org/10.1016/j.neucom.2013.05.059
- Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique", Journal of Artificial Intelligence Research, Vol,16, 2002, pp. 321-357. https://doi.org/10.1613/jair.953
- Datta, S. and S. Das, "Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs", Neural Networks, Vol.70, 2015, pp. 39-52. https://doi.org/10.1016/j.neunet.2015.06.005
- Dembczynski, K., A. Jachnik, W. Kotlowski, W. Waegeman, and E. Hullermeier, "Optimizing the F-measure in multi-label classification: Plug-in rule approach versus structured loss minimization", In International Conference on Machine Learning, 2013, pp. 1130-1138.
- Dubey, R., J. Zhou, Y. Wang, P. M. Thompson, J. Ye, and Alzheimer's Disease Neuroimaging Initiative, "Analysis of sampling techniques for imbalanced data: An n = 648 ADNI study", NeuroImage, Vol.87, 2014, pp. 220-241. https://doi.org/10.1016/j.neuroimage.2013.10.005
- Esposito, C., G. A. Landrum, N. Schneider, N. Stiefl, and S. Riniker, "GHOST: Adjusting the decision threshold to handle imbalanced data in machine learning", Journal of Chemical Information and Modeling, Vol.61, No.6, 2021, pp. 2623-2640. https://doi.org/10.1021/acs.jcim.1c00160
- Guyon, I. and A. Elisseeff, "An introduction to variable and feature selection", Journal of Machine Learning Research, Vol.3, 2003, pp. 1157-1182.
- Haixiang, G., L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, "Learning from class-imbalanced data: Review of methods and applications", Expert Systems with Applications, Vol.73, 2017, pp. 220-239. https://doi.org/10.1016/j.eswa.2016.12.035
- Han, H., W. Y. Wang, and B. H. Mao, "Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning", In International Conference on Intelligent Computing, 2005, pp. 878-887.
- He, H., Y. Bai, E. A. Garcia, and S. Li, "ADASYN: Adaptive synthetic sampling approach for imbalanced learning", IEEE International Joint Conference on Neural Networks, 2008, pp. 1322-1328.
- He, H. and E. A. Garcia, "Learning from imbalanced data", IEEE Transactions on Knowledge and Data Engineering, Vol.21, No.9, 2009, pp. 1263-1284. https://doi.org/10.1109/TKDE.2008.239
- Kaggle, "Loan Default Prediction Dataset", NIK HIL, 2023, Available at https://www.kaggle.com/datasets/nikhil1e9/loan-default.
- Kim, M. J., D. K. Kang, and H. B. Kim, "Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction", Expert Systems with Applications, Vol.42, No.3, 2015, pp. 1074-1082. https://doi.org/10.1016/j.eswa.2014.08.025
- Lopez, V., A. Fernandez, S. Garcia, V. Palade, and F. Herrera, "An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics", Information Sciences, Vol.250, 2013, pp. 113-141. https://doi.org/10.1016/j.ins.2013.07.007
- Mani, I. and I. Zhang, "kNN approach to unbalanced data distributions: A case study involving information extraction", In Proceedings of Workshop on Learning From Imbalanced Datasets, Vol.126, No.1, 2003, pp. 1-7.
- Mellor, A., S. Boukir, A. Haywood, and S. Jones, "Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin", ISPRS Journal of Photogrammetry and Remote Sensing, Vol.105, 2015, pp. 155-168. https://doi.org/10.1016/j.isprsjprs.2015.03.014
- Messier, W. F. Jr. and J. V. Hansen, "Inducing rules for expert system development: An example using default and bankruptcy data", Management Science, Vol.34, No.4, 1998, pp. 1403-1415. https://doi.org/10.1287/mnsc.34.12.1403
- Musicant, D. R., V. Kumar, and A. Ozgur, "Optimizing F-Measure with Support Vector Machines", FLAIRS, 2003, pp. 356-360.
- Nan, Y., K. M. Chai, W. S. Lee, and H. L. Chieu, "Optimizing F-measure: A tale of two approaches", arXiv preprint arXiv:1206.4625, 2012.
- Ohlson, J. A., "Financial ratios and the probabilistic prediction of bankruptcy", Journal of Accounting Research, 1980, pp. 109-131.
- Sheng, V. S. and C. X. Ling, "Thresholding for making classifiers cost-sensitive", Aaai, Vol.6, 2006, pp. 476-481.
- Shin, K. S., T. S. Lee, and H. J. Kim, "An application of support vector machines in bankruptcy prediction", Expert Systems with Applications, Vol.28, No.1, 2005, pp. 127-135. https://doi.org/10.1016/j.eswa.2004.08.009
- Weiss, G. M., "Mining with rarity: A unifying framework", ACM Sigkdd Explorations Newsletter, Vol.6, No.1, 2004, pp. 7-19. https://doi.org/10.1145/1007730.1007734
- Yijing, L., G. Haixiang, L. Xiao, L. Yanan, and L. Jinling, "Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data", Knowledge-Based Systems, Vol.94, 2016, pp. 88-104. https://doi.org/10.1016/j.knosys.2015.11.013
- Zhou, J., W. Li, J. Wang, S. Ding, and C. Xia, "Default prediction in P2P lending from high-dimensional data based on machine learning", Physica A: Statistical Mechanics and Its Applications, Vol.534, 2019.
- Zhou, L., "Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods", Knowledge-Based Systems, Vol.41, 2013, pp. 16-25. https://doi.org/10.1016/j.knosys.2012.12.007
- Zmijewski, M. E., "Methodological issues related to the estimation of financial distress prediction models", Journal of Accounting Research, Vol.22, 1984, pp. 59-82. https://doi.org/10.2307/2490859