• Title/Summary/Keyword: Default Model

Search Result 227, Processing Time 0.025 seconds

The Relationship between Default Risk and Asset Pricing: Empirical Evidence from Pakistan

  • KHAN, Usama Ehsan;IQBAL, Javed
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.717-729
    • /
    • 2021
  • This paper examines the efficacy of the default risk factor in an emerging market context using the Fama-French five-factor model. Our aim is to test whether the Fama-French five-factor model augmented with a default risk factor improves the predictability of returns of portfolios sorted on the firm's characteristics as well as on industry. The default risk factor is constructed by estimating the probability of default using a hybrid version of dynamic panel probit and artificial neural network (ANN) to proxy default risk. This study also provides evidence on the temporal stability of risk premiums obtained using the Fama-MacBeth approach. Using a sample of 3,806 firm-year observations on non-financial listed companies of Pakistan over 2006-2015 we found that the augmented model performed better when tested across size-investment-default sorted portfolios. The investment factor contains some default-related information, but default risk is independently priced and bears a significantly positive risk premium. The risk premiums are also found temporally stable over the full sample and more recent sample period 2010-2015 as evidence by the Fama-MacBeth regressions. The finding suggests that the default risk factor is not a useless factor and due to mispricing, default risk anomaly prevails in the Pakistani equity market.

Capital Structure and Default Risk: Evidence from Korean Stock Market

  • GUL, Sehrish;CHO, Hyun-Rae
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.2
    • /
    • pp.15-24
    • /
    • 2019
  • This study analyzes the effect of the capital structure of Korean manufacturing firms on default risk based on Moody's KMV option pricing model where the probability of default is obtained by measuring the distance to default as a covariant in logit model developed by Merton (1974). Based on the panel data of manufacturing firms, this study achieves its primary objective, using a fixed effect regression model and examines the effect of a firm's capital structure on default risk amongst publicly listed firms on Korea exchange during 2005-2016. Empirical results obtained suggest that the rise in short-term debt to assets leads to increase the risk of default whereas the increase in long-term debt to assets leads to decrease the default risk. The benefits of short-term debt financing over a short-term period fade out in the presence of information asymmetry. However, long-term debt financing overcomes the information asymmetry and enjoys the paybacks of tax advantage associated with long-term debt. Additionally, size, tangibility and interest coverage ratio are also the important determinants of default risk. Findings support the trade-off theory of capital structure and recommend the optimal use of long-term debt in a firm's capital structure.

A PROBABILISTIC APPROACH FOR VALUING EXCHANGE OPTION WITH DEFAULT RISK

  • Kim, Geonwoo
    • East Asian mathematical journal
    • /
    • v.36 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • We study a probabilistic approach for valuing an exchange option with default risk. The structural model of Klein [6] is used for modeling default risk. Under the structural model, we derive the closed-form pricing formula of the exchange option with default risk. Specifically, we provide the pricing formula of the option with the bivariate normal cumulative function via a change of measure technique and a multidimensional Girsanov's theorem.

A Study on Default Prediction Model: Focusing on The Imbalance Problem of Default Data (부도 예측 모형 연구: 부도 데이터의 불균형 문제를 중심으로)

  • Jinsoo Park;Kangbae Lee;Yongbok Cho
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.169-183
    • /
    • 2024
  • This study summarizes improvement strategies for addressing the imbalance problem in observed default data that must be considered when constructing a default model and compares and analyzes the performance improvement effects using data resampling techniques and default threshold adjustments. Empirical analysis results indicate that as the level of imbalance resolution in the data increases, and as the default threshold of the model decreases, the recall of the model improves. Conversely, it was found that as the level of imbalance resolution in the data decreases, and as the default threshold of the model increases, the precision of the model improves. Additionally, focusing solely on either recall or precision when addressing the imbalance problem results in a phenomenon where the other performance evaluation metrics decrease significantly due to the trade-off relationship. This study differs from most previous research by focusing on the relationship between improvement strategies for the imbalance problem of default data and the enhancement of default model performance. Moreover, it is confirmed that to enhance the practical usability of the default model, different improvement strategies for the imbalance problem should be applied depending on the main purpose of the model, and there is a need to utilize the Fβ Score as a performance evaluation metric.

Stress Test on a Shipping Company's Financial Stability (스트레스 테스트를 활용한 해운기업 안정성 연구)

  • Park, Sunghwa;Kwon, Janghan
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.97-110
    • /
    • 2023
  • This study examines the effect of macroeconomic shocks on the financial stability of the Korean shipping industry. Using Firth logistic regression model, this study estimates the default probability of a shipping company. The results from a default prediction model suggest that total assets are negatively correlated with default probability, while total debt is positively correlated with default probability. Based on the results from a default prediction model, this study investigates the effect of macroeconomic shocks, namely total assets, sales, and total debt shocks, on a shipping company's default probability. The stress test results indicate that a decrease in sales and total assets significantly deteriorates the financial stability of a shipping company.

Performance Evaluation and Forecasting Model for Retail Institutions (유통업체의 부실예측모형 개선에 관한 연구)

  • Kim, Jung-Uk
    • Journal of Distribution Science
    • /
    • v.12 no.11
    • /
    • pp.77-83
    • /
    • 2014
  • Purpose - The National Agricultural Cooperative Federation of Korea and National Fisheries Cooperative Federation of Korea have prosecuted both financial and retail businesses. As cooperatives are public institutions and receive government support, their sound management is required by the Financial Supervisory Service in Korea. This is mainly managed by CAEL, which is changed by CAMEL. However, NFFC's business section, managing the finance and retail businesses, is unified and evaluated; the CAEL model has an insufficient classification to evaluate the retail industry. First, there is discrimination power as regards CAEL. Although the retail business sector union can receive a higher rating on a CAEL model, defaults have often been reported. Therefore, a default prediction model is needed to support a CAEL model. As we have the default prediction model using a subdivision of indexes and statistical methods, it can be useful to have a prevention function through the estimation of the retail sector's default probability. Second, separating the difference between the finance and retail business sectors is necessary. Their businesses have different characteristics. Based on various management indexes that have been systematically managed by the National Fisheries Cooperative Federation of Korea, our model predicts retail default, and is better than the CAEL model in its failure prediction because it has various discriminative financial ratios reflecting the retail industry situation. Research design, data, and methodology - The model to predict retail default was presented using logistic analysis. To develop the predictive model, we use the retail financial statements of the NFCF. We consider 93 unions each year from 2006 to 2012 to select confident management indexes. We also adapted the statistical power analysis that is a t-test, logit analysis, AR (accuracy ratio), and AUROC (Area Under Receiver Operating Characteristic) analysis. Finally, through the multivariate logistic model, we show that it is excellent in its discrimination power and higher in its hit ratio for default prediction. We also evaluate its usefulness. Results - The statistical power analysis using the AR (AUROC) method on the short term model shows that the logistic model has excellent discrimination power, with 84.6%. Further, it is higher in its hit ratio for failure (prediction) of total model, at 94%, indicating that it is temporally stable and useful for evaluating the management status of retail institutions. Conclusions - This model is useful for evaluating the management status of retail union institutions. First, subdividing CAEL evaluation is required. The existing CAEL evaluation is underdeveloped, and discrimination power falls. Second, efforts to develop a varied and rational management index are continuously required. An index reflecting retail industry characteristics needs to be developed. However, extending this study will need the following. First, it will require a complementary default model reflecting size differences. Second, in the case of small and medium retail, it will need non-financial information. Therefore, it will be a hybrid default model reflecting financial and non-financial information.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.

The Default Risk of the Research Funding with Uncertain Variable in South Korea, Along with the Greeks (옵션민감도를 고려한 기술자금의 경제적 가치와 실패확률)

  • Sim, Jaehun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • As a nation experiencing rapid economic growth, South Korea and its government have made a continuous effort toward efficient research investments to achieve transformation of the Korean industry for the fourth industrial revolution. To achieve the maximum effectiveness of the research investments, it is necessary to evaluate its funding's worth and default risk. Thus, incorporating the concepts of the Black-Scholes-Merton model and the Greeks, this study develops a default-risk evaluation model in the foundation of a system dynamics methodology. By utilizing the proposed model, this study estimates the monetary worth and the default risks of research funding in the public and private sectors of Information and Communication technologies, along with the sensitivity of the R&D economic worth of research funding to changes in a given parameter. This study finds that the public sector has more potential than the private sector in terms of monetary worth and that the default risks of three types of research funding are relatively high. Through a sensitivity analysis, the results indicate that uncertainty in volatility, operation period, and a risk-free interest rate has trivial impacts on the monetary worth of research funding, while volatility has large impacts on the default risk among the uncertain factors.

Profitability and the Distance to Default: Evidence from Vietnam Securities Market

  • VU, Van Thuy Thi;DO, Nhung Hong;DANG, Hung Ngoc;NGUYEN, Tram Ngoc
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.4
    • /
    • pp.53-63
    • /
    • 2019
  • The paper examines the influence of profitability on distance to default (DD) in Vietnam securities market. The investigated sample consists of 211 companies listed on HOSE during 18 years from 2010 to 2017. We apply KMV model to calculate distance to default and use both macroeconomics factors and firm specific factors as independent variables. Using General Least Squared (GLS) method, we find evidence to confirm the positive relationship between profitability and distance to default. This result showed that, although profitability did not directly reflect the cash flow generated, a good profitable enterprise would be an important factor to help facilitate and generate cash flow and at the same time debt was guaranteed when it was due. Besides, the test results revealed that the financial structure and sales on assets have the inverse effect on the distance to default at the significance level of 5%. The results also revealed that a group of macro factors had an influence on the distance to default of businesses, including spread, GDP and trade balance (via exchange rates). Gross domestic income had certain impacts on the distance to default of businesses. This was also a basic indicator measuring the national economic cycle.

A Systematic Analysis on Default Risk Based on Delinquency Probability

  • Kim, Gyoung Sun;Shin, Seung Woo
    • Korea Real Estate Review
    • /
    • v.28 no.3
    • /
    • pp.21-35
    • /
    • 2018
  • The recent performance of residential mortgages demonstrated how default risk operated separately from prepayment risk. In this study, we investigated the determinants of the borrowers' decisions pertaining to early termination through default from the mortgage performance data released by Freddie Mac, involving securitized mortgage loans from January 2011 to September 2013. We estimated a Cox-type, proportional hazard model with a single risk on fundamental factors associated with default options for individual mortgages. We proposed a mortgage default model that included two specifications of delinquency: one using a delinquency binary variable, while the other using a delinquency probability. We also compared the results obtained from two specifications with respect to goodness-of-fit proposed in the spirit of Vuong (1989) in both overlapping and nested models' cases. We found that a model with our proposed delinquency probability variable showed a statistically significant advantage compared to a benchmark model with delinquency dummy variables. We performed a default prediction power test based on the method proposed in Shumway (2001), and found a much stronger performance from the proposed model.