DOI QR코드

DOI QR Code

Productivity Evaluation of Rosemary Shoots using Artificial Light Sources in Multi-layer Cultivation

다단재배에서 인공광원을 이용한 로즈마리 어린순의 생산성 평가

  • Myeong Suk Kim (Horticulture Division, Jeonbuk State Agriculture Research & Extension Services) ;
  • Jung Seob Moon (Medicinal resource research institute Herb & Wild vegetables experiment station, Jeonbuk State Agriculture Research & Extension Services) ;
  • Song Hee Ahn (Medicinal resource research institute Herb & Wild vegetables experiment station, Jeonbuk State Agriculture Research & Extension Services) ;
  • Dong Chun Cheong (Horticulture Division, Jeonbuk State Agriculture Research & Extension Services) ;
  • Min Sil Ahn (Horticulture Division, Jeonbuk State Agriculture Research & Extension Services) ;
  • So Ra Choi (Agriculture Environmet Division, Jeonbuk State Agriculture Research & Extension Services)
  • 김명석 (전북특별자치도농업기술원 원예과) ;
  • 문정섭 (전북특별자치도농업기술원 약용자원연구소 허브산채시험장) ;
  • 안송희 (전북특별자치도농업기술원 약용자원연구소 허브산채시험장) ;
  • 정동춘 (전북특별자치도농업기술원 원예과) ;
  • 안민실 (전북특별자치도농업기술원 원예과) ;
  • 최소라 (전북특별자치도농업기술원 농업환경과)
  • Received : 2024.04.13
  • Accepted : 2024.07.18
  • Published : 2024.07.31

Abstract

This study was aimed to investigate the effects of layer-by-floor environmental conditions and lower shelf supplemental lighting on the productivity of fresh shoots when growing rosemary in multi-layer cultivation. The 10-cm cuttings from stock plants of common rosemary (Rosemarinus officinalis) were planted in a 128-hole tray, rooted, and then transplanted into pots of 750, 1,300, and 2,000 mL. Afterwards, they were placed on multi-layer shelves (width × length × height: 149 × 60 × 57 cm, 3-layer) in a two-linked greenhouse and cultivated using the sub-irrigation. The productivity of young shoots by layer of the multi-layer shelf was the highest on the third floor (top floor), but productivity decreased sharply after September due to stem lignification caused by excessive light during the summer. Conversely, the lower two layers exhibited faster growth rate of young shoots until the late cultivation period, but the quality decreased due to stem softening and leaf epinasty. To address the excessive light problem on the third floor during the summer, shading was implemented at 30% opacity in July and August, resulting in a 210% increase in rosemary young shoots count and a 162% increase in fresh weight per unit area compared to the unshaded control. To improve the lighting deficiency on the lower layer, supplemental lighting with LED at 30 W increased rosemary young shoot harvest by 168% from June to September compared to no supplemental lighting, but it decreased productivity after September. Therefore, when growing rosemary in multi-layer, it is judged that intensive production of young shoots is possible if the third floor (top layer) is shaded with 30% of light from July to August to prevent stem lignification, and the lower layer is temporarily supplemented with LED 30 W from June to September to increase young shoot growth.

본 연구는 로즈마리 다단재배 시 층별 환경조건 및 하위선반 보조 광원이 어린순 품질과 생산성에 미치는 영향을 구명하고자 수행되었다. 정아를 제거한 커먼 로즈마리의 중간부 삽수 10cm를 128공 트레이에 삽목하여 발근시킨 뒤 750, 1,300, 2,000mL의 화분에 이식하였다. 이후 2연동 온실 내 다단선반(3단)에 배치하여 저면관수 방식으로 재배하였다. 다단선반 층별 어린순 생산성은 3층(최상층)에서 가장 우수하였으나, 여름철 광 과다에 의한 줄기 목질화로 9월 이후 생산성이 급감하였다. 반면 하위 2개 층은 재배 후기까지 어린순의 생장속도가 빨랐으나, 줄기 연화 및 엽 상편생장으로 품질이 감소하였다. 다단선반 3층 여름철 광 과다 문제 해결을 위해 7, 8월 30% 차광 재배시 무차광 대비 단위 면적당 어린순 수확 줄기수 210%, 생체중 162% 증수하였다. 하위층 광 부족 문제를 개선하고자 보조 광원 설치 재배 시 LED 30W에서 6-9월 어린순 수확량이 보조광원 미설치 대비 168% 증가하였으나, 9월 이후 오히려 생산성을 감소시켰다. 따라서 로즈마리 다단재배 시 3층(최상층)은 7-8월 30% 차광으로 줄기 목질화를 막고, 하위층은 6-9월 LED 30W로 일시적 보광을 통해 어린순 생육을 증대시킨다면 어린순 집약생산이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 결과물은 전북특별자치도농업기술원 경상과제 연구사업으로 수행되었음(LP0046692021, LP0046692022).

References

  1. Agrix 2023, Agricultural business registration information status service, Crop cultivation status, Status by item (Herb). Available via https://uni.agrix.go.kr/docs7/biOlap/dashBoard.do Accessed 25 June 2024.
  2. Business Research Insights 2023, Rosemary oil market size, share, growth, and industry analysis by type, by application, regional forecast to 2031. Available via https://www.businessresearchinsights.com/market-reports/rosemary-oil-market-102302 Accessed 2 March 2024.
  3. Cho H.J., and C.H. Kang 2019, A study on the architectural planning of vertical smart farm. Archit Inst Korea 39(1):114-117.
  4. Despommier D. 2005, The Vertical Farm: Regarding the impact of agriculture on ecosystem function and services. Columbia University Press.
  5. Frankel E.N., S.W. Huang, R. Aeschbach, and E. Prior 1996, Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J Agric Food Chem 44:131-135. doi:10.1021/jf950374p
  6. Imported Food Information Maru 2021, Fresh rosemary import statistics (2017-2020). Available via https://impfood.mfds.go.kr. Accessed 10 June 2022.
  7. Kim J.C., M.A. Park, and M.J. Kim 2002, Aromatherapy in primary care. J Korean Acad Farm Med 23:417-429.
  8. Kozai T., G. Niu, and M. Takagaki 2016, Plant factory: An indoor vertical farming system for efficient quality food production. Ed 1, Elsevier Inc., USA, pp 7-33.
  9. Langhans R.W., and V. Langhans 1990, Greenhouse management: a guide to structures, environmental control, materials handling. crop programming and business analysis. Ed 3, Halcyon Press, Ithaca, NY, USA, pp 24-90.
  10. Lee G.O., H.J. Kwon, Y.L. Kim, I.J. Kang, G.S. Yang, J.S. Cho, and K.H. Son 2024, Germination characteristics of eight species for production of medicinal crops in vertical farms. J Bio-Env Con 33(2):79-87. doi:10.12791/KSBEC.2024.33.2.079
  11. Lee J.H., and S.Y. Nam 2022, Analysis of growth and leaf color changes of sedum album cv. athoum according to the spectral power distribution of several white LEDs. Flower Res J 30(4):184-193. doi:10.11623/frj.2022.30.4.03
  12. Lopez R., and E. Runkle 2017, Light management in controlled environments. Meister Media Worldwide, USA.
  13. Okamura N., Y. Fujimoto, S. Kuwabara, and A. Yagi 1994, High performance liquid chromatographic determination of carnosic acid and carnosol in Rosmarinus officinalis and Salvia officinalis. J Chromatogr A 679:381-386. doi:10.1016/0021-9673(94)80582-2
  14. Sandalio L.M., M. Rodriguez-Serrano, and M.C. Romero-Puertas 2016, Leaf epinasty and auxin: A biochemical and molecular overview. Plant Sci 253:187-193. doi:10.1016/j.plantsci.2016.10.002
  15. Silvestri C., M.E. Caceres, M. Ceccarelli, A.L. Pica, E. Rugini, and V. Cristofori 2019, Influence of continuous spectrum light on morphological traits and leaf anatomy of hazelnut plantlets. Front Plant Sci 10:1318. doi:10.3389/fpls.2019.01318
  16. Stanghellini C., A. van't Ooster, and E. Heuvelink 2019. Greenhouse horticulture: technology for optimal crop production. Wageningen Academic Publishers, Wageningen, the Netherlands, pp 141-145. doi:10.3920/978-90-8686-879-7
  17. Thorsen M.A., and K.S. Hildebrandt 2003, Quantitative determination of phenolic diterpenes in rosemary extracts: Aspects of accurate quantification. J Chromatogr A 995:119-125. doi:10.1016/S0021-9673(03)00487-4
  18. Yang W.C. 2015, A study on the introduction of LED lighting to vertical farm for urban agriculture. J Korean Soc Des Cult 21(2):335-345.