DOI QR코드

DOI QR Code

Thermal and Vibration Analysis of TR Module Structural Model for Environmental Test Evaluation

환경시험 평가를 위한 TR 모듈 구조모델의 열/진동 해석

  • Dong-Seok Kang (Department of Aeronautical and Astronautical Engineering, Korea Aerospace University) ;
  • Jong-Pil Kim (Satellite MDI & PA Team, LIG NEX) ;
  • Yuri Lee (Satellite MDI & PA Team, LIG NEX) ;
  • Sung-Woo Park (Satellite MDI & PA Team, LIG NEX) ;
  • Jin-Ho Roh (Department of Aeronautical and Astronautical Engineering, Korea Aerospace University)
  • 강동석 (항공우주공학과, 한국항공대학교 ) ;
  • 김종필 (위성체계연구소, LIG넥스원) ;
  • 이유리 (위성체계연구소, LIG넥스원) ;
  • 박성우 (위성체계연구소, LIG넥스원) ;
  • 노진호 (항공우주공학과, 한국항공대학교 )
  • Received : 2024.03.28
  • Accepted : 2024.06.18
  • Published : 2024.08.31

Abstract

The Synthetic Aperture Radar (SAR) is equipped with a Transmitter/Receiver (TR) module, which serves as the signal transmission and reception unit for acquiring image data. The TR module generates significant heat during signal generation and amplification, potentially degrading performance or causing mission failure. Furthermore, launch and operational environments may result in structural damage to the components. Thus, assessing the thermal and structural safety of the TR module through thermal and vibration tests is essential to guarantee its safety. Safety assessments can be verified through environmental tests prescribed in MIL-STD-883. This paper explores the thermal and structural safety characteristics of the TR module by simulating test environments using finite element analysis prior to conducting environmental tests.

SAR 영상 레이더에는 영상정보 획득을 위한 신호 송수신 모듈인 TR 모듈이 탑재된다. TR 모듈은 신호를 생성/증폭하는 과정에서 높은 발열이 발생하는 부품으로 이는 TR 모듈 내부 소자의 성능 저하 또는 임무 실패를 야기할 수 있다. 또한, 발사환경 및 운용 환경은 소자의 구조적 파손을 야기할 수 있다. 따라서 소자의 생존성을 확인하기 위해 열환경시험 그리고 진동시험 등을 통한 TR 모듈의 열적 그리고 구조적 안전성 평가 필요하다. 안정성 평가는 MIL-STD-883에 명시되어 있는 환경시험을 통해 확인이 가능하다. 본 논문에서는 TR 모듈의 시험환경을 유한요소를 통해 묘사하여 환경시험 전 TR 모듈의 열적 그리고 구조적 안전성 해석 특성을 살펴보았다.

Keywords

Acknowledgement

본 논문은 2021년도 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(KRIT-CT-21-029).

References

  1. J.H. Park and J.H. Lee, "Fan Unit Design Technology for Electronic Equipment Cooling," Journal of the KSME, vol. 36, no. 4, pp. 324-337, 1996. 
  2. H.J. Yang, Y.R. Lee, S.M. Cho, K.D. Yu and J.P. Kim, "The Design Method of TR Module Based GaN for Satellite," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 50, no. 1, pp 31-38, 2022. 
  3. ECSS-Q-ST-30-11, Derating - EEE components, ESA Requirements and Standards Division 
  4. T.W. Kang, Y.J. Song, M.J. Lee, Y.H. Ham, Y.W. Seong, T.C. Cho, K.M. Back, S.H. Park, H.W. Suh, Y.S. Nam and J.H. Kim, "A Study of the Development of Defense Space Standardization and Qualification System," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 2023, no. 4, pp 776-777, 2023. 
  5. J. H. Park, H.S. Kim, H.S. Ko, B.C. Jin and H.K. Seo, "Experimental Verification of Heat Sink for FPGAThermal Control," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 42, no. 9, pp. 789-794, 2014. 
  6. B.G. Chae, Y.K. Lee, S.J. Kang, S. Y, Jang and H.U. Oh "Evaluation of Thermal Stability of Electro-Optical Camera Controller Box for Compact Advanced Satellite," Journal of Advanced Engineering and Technology, vol. 10, no. 2, pp. 185-190, 2017. 
  7. MIL-STD-883, Test method standard for microcircuits (Revision H), United States Department of Defense, USA 
  8. P. S. Speicher, "VLSI Package Reliability," Microelectronics International, vol. 8, no. 3, pp. 11-17, Sept 1991.