DOI QR코드

DOI QR Code

계피 에탄올 추출물의 유효성분 분석 및 항산화 효능 평가

Antioxidant Potential of Cinnamomum cassia Ethanolic Extract: Identification Of Compounds

  • 허지웅 (경상국립대학교 수의과대학) ;
  • 손재동 (경상국립대학교 수의과대학) ;
  • 양예진 (경상국립대학교 수의과대학) ;
  • 김민정 (경상국립대학교 수의과대학) ;
  • 양주혜 (한국한의학연구원 한의기술응용센터) ;
  • 박광일 (경상국립대학교 수의과대학)
  • Ji Woong Heo (Departments of Veterinary Medicine, Gyeongsang National University) ;
  • Jae Dong Son (Departments of Veterinary Medicine, Gyeongsang National University) ;
  • Ye Jin Yang (Departments of Veterinary Medicine, Gyeongsang National University) ;
  • Min Jung Kim (Departments of Veterinary Medicine, Gyeongsang National University) ;
  • Ju Hye Yang (Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine) ;
  • Kwang Il Park (Departments of Veterinary Medicine, Gyeongsang National University)
  • 투고 : 2024.07.09
  • 심사 : 2024.08.11
  • 발행 : 2024.08.31

초록

Objectives : Natural products containing bioactive compounds with high antioxidant activity are potentially important sources that can contribute to the improvement of various diseases. Therefore, the aim of this study was to investigate phenolic compounds of Cinnamomum cassia (C. cassia) ethanolic extract (CCEE). And then we evaluated the antioxidant effect. Methods : We used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to identify the compounds in CCEE. LC-MS/MS was performed in positive ion mode using Shimadzu, Nexera HPLC system and IDA TOF mass system. Solvent A was distilled water and solvent B was acetonitrile as mobile phase. The analysis was performed at a flow rate of 0.5 ml/min, column temperature of 35 ℃ and wavelength of 284 nm. The antioxidant effect of CCEE was analyzed using DPPH (2,2-diphenyl-2-picrylhydrazyl free radical) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)). In addition, total phenolics and total flavonoids contents were measured to determine antioxidant effects. Results : Analysis using LC-MS/MS identified four compounds: Coumarin, Trans-cinnamaldehyde, Trans-cinnamic acid, and 2-Methoxycinnamaldehyde. Free radicals decreased in a concentration-dependent manner starting from 10 ㎍/ml of CCEE, and decreased to a level similar to Ascorbic acid (AA) from a concentration of 60 ㎍/ml onwards. Conclusions : Based on the findings, CCEE exhibits strong antioxidant activity as evidenced by the presence of Coumarin, Trans-cinnamaldehyde, Trans-cinnamic acid, and 2-Methoxycinnamaldehyde. Consequently, this study suggests that CCEE can serve as an important source of natural antioxidants and can be efficiently used in the management of oxidative stress diseases.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A3053818).

참고문헌

  1. Yang CH, Li RX, Chuang LY. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules. 2012;17(6):7294-304. https://doi.org/10.3390/molecules17067294
  2. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603-16. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  3. Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl Biol Chem. 2017;60:327-38. https://doi.org/10.1007/s13765-017-0285-9
  4. Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, et al. Roles of reactive oxygen species in inflammation and cancer. MedComm (2020). 2024;5(4):e519.
  5. Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845-63. https://doi.org/10.7150/thno.50905
  6. Kim JH, Sim YY, Jeong JY, Jung JH, Rhee JS. Chronic toxic effects of fragmented polyvinyl chloride on the water flea Moina macrocopa. Mol. Cell. Toxicol. 2024;20:579-90. https://doi.org/10.1007/s13273-023-00372-z
  7. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2):119.
  8. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72. https://doi.org/10.2147/CIA.S158513
  9. Zhou F, Wu F, Wang X, Yu S, Tian W, Lv O. miR-20b-5p exerts protective effects against experimental autoimmune encephalomyelitis in mice by inhibiting NLRP3 transcription and NLRP3/ASC/caspase-1 axis activation. Mol. Cell. Toxicol. 2023;1-11.
  10. Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. Oxid Med Cell Longev. 2017;2017:4535194.
  11. Choi YH. Silibinin alleviates DNA damage, mitochondrial dysfunction, and apoptosis caused by oxidative stress in human retinal pigment epithelial cells. Mol. Cell. Toxicol. 2023;20:709-721 https://doi.org/10.1007/s13273-023-00412-8
  12. Mutlu M, Bingol Z, Uc EM, Koksal E, Goren AC, Alwasel SH, et al. Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life (Basel). 2023;13(1):136.
  13. Blaszczyk N, Rosiak A, Kaluzna-Czaplinska J. The Potential Role of Cinnamon in Human Health. Forests. 2021;12(5):648.
  14. Khan BM, Qiu HM, Xu SY, Liu Y, Cheong KL. Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra haitanensis. Int J Biol Macromol. 2020;145:1155-1161. https://doi.org/10.1016/j.ijbiomac.2019.10.040
  15. De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents-a review. Curr Med Chem. 2011;18(11):1672-703. https://doi.org/10.2174/092986711795471347
  16. Lee MJ, Seo HJ, Hwang GS, Choi S, Park SJ, Hwang SJ, Kang KS. Molecular Mechanism of Cinnamomum cassia against Gastric Damage and Identification of Active Compounds. Biomolecules. 2022;12(4):525.
  17. Rezaei Z, Momtaz S, Gharazi P, Rahimifard M, Baeeri M, Abdollahi AR, et al. Cinnamic Acid Ameliorates Acetic Acid-induced Inflammatory Response through Inhibition of TLR-4 in Colitis Rat Model. Antiinflamm Antiallergy Agents Med Chem. 2024;23(1):21-30. https://doi.org/10.2174/0118715230278980231212103709
  18. Zhang Z, Qin G, Li B, Tian S. Effect of Cinnamic Acid for Controlling Gray Mold on Table Grape and Its Possible Mechanisms of Action. Curr Microbiol. 2015;71(3):396-402. https://doi.org/10.1007/s00284-015-0863-1
  19. Hseu YC, Korivi M, Lin FY, Li ML, Lin RW, Wu JJ, et al. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. J Dermatol Sci. 2018;90(2):123-134. https://doi.org/10.1016/j.jdermsci.2018.01.004
  20. Adisakwattana S. Cinnamic Acid and Its Derivatives: Mechanisms for Prevention and Management of Diabetes and Its Complications. Nutrients. 2017;9(2):163.
  21. Zhu B, Shang B, Li Y, Zhen Y. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Mol Med Rep. 2016;13(5):4159-66. https://doi.org/10.3892/mmr.2016.5041
  22. Li AL, Ni WW, Zhang QM, Li Y, Zhang X, Wu HY, et al. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol Immunol. 2020;64(1):23-32.
  23. Ren Z, Nie B, Liu T, Yuan F, Feng F, Zhang Y, et al. Simultaneous Determination of Coumarin and Its Derivatives in Tobacco Products by Liquid Chromatography-Tandem Mass Spectrometry. Molecules. 2016;21(11):1511.
  24. Wang P, Chi J, Guo H, Wang SX, Wang J, Xu EP, et al. Identification of Differential Compositions of Aqueous Extracts of Cinnamomi Ramulus and Cinnamomi Cortex. Molecules. 2023;28(5):2015.
  25. Zhou W, Liang Z, Li P, Zhao Z, Chen J. Tissue-specific chemical profiling and quantitative analysis of bioactive components of Cinnamomum cassia by combining laser-microdissection with UPLC-Q/TOF-MS. Chem Cent J. 2018;12(1):71.
  26. Zeng WX, Cheng X, Bi LW, Li SN, Chen YX, Zhao ZD. Effect of biological pretreatment on chemical components from cinnamon twigs and leaves. Chemistry and Industry of Forest Products. 2021;41(4):101-110
  27. Boke Sarikahya N, Goren AC, Kirmizigul S. Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. J Pharm Biomed Anal. 2019;173:120-125. https://doi.org/10.1016/j.jpba.2019.05.019
  28. Tohma H, Koksal E, Kilic O, Alan Y, Yilmaz MA, Gulcin I, et al. RP-HPLC/MS/MS Analysis of the Phenolic Compounds, Antioxidant and Antimicrobial Activities of Salvia L. Species. Antioxidants (Basel). 2016;5(4):38.
  29. Borzoei A, Rafraf M, Niromanesh S, Farzadi L, Narimani F, Doostan F. Effects of cinnamon supplementation on antioxidant status and serum lipids in women with polycystic ovary syndrome. J Tradit Complement Med. 2017;8(1):128-133. https://doi.org/10.1016/j.jtcme.2017.04.008
  30. Akwu NA, Lekhooa M, Deqiang D, Aremu AO. Antidepressant effects of coumarins and their derivatives: A critical analysis of research advances. Eur J Pharmacol. 2023;956:175958.
  31. Rostom B, Karaky R, Kassab I, Sylla-Iyarreta Veitia M. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur J Pharmacol. 2022;922:174867.
  32. Ramsis TM, Ebrahim MA, Fayed EA. Synthetic coumarin derivatives with anticoagulation and antiplatelet aggregation inhibitory effects. Medicinal Chemistry Research. 2023;32(11):2269-78. https://doi.org/10.1007/s00044-023-03148-1
  33. Wu Y, Xu J, Liu Y, Zeng Y, Wu G. A Review on Anti-Tumor Mechanisms of Coumarins. Front Oncol. 2020;10:592853.
  34. Todorov L, Saso L, Kostova I. Antioxidant Activity of Coumarins and Their Metal Complexes. Pharmaceuticals (Basel). 2023;16(5):651.
  35. Davaatseren M, Jo YJ, Hong GP, Hur HJ, Park S, Choi MJ. Studies on the Anti-Oxidative Function of trans-Cinnamaldehyde-Included β-Cyclodextrin Complex. Molecules. 2017;22(12):1868.
  36. Banerjee S, Banerjee S. Anticancer Potential and Molecular Mechanisms of Cinnamaldehyde and Its Congeners Present in the Cinnamon Plant. Physiologia. 2023;3(2):173-207. https://doi.org/10.3390/physiologia3020013
  37. Kim ME, Na JY, Lee JS. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacol Immunotoxicol. 2018;40(3):219-24. https://doi.org/10.1080/08923973.2018.1424902
  38. Larasati YA, Meiyanto E. Revealing the potency of cinnamon as an anti-cancer and chemopreventive agent. Indonesian Journal of Cancer Chemoprevention. 2018;9(1):47-62. https://doi.org/10.14499/indonesianjcanchemoprev9iss1pp47-62
  39. Hwa JS, Jin YC, Lee YS, Ko YS, Kim YM, Shi LY, et al. 2-methoxycinnamaldehyde from Cinnamomum cassia reduces rat myocardial ischemia and reperfusion injury in vivo due to HO-1 induction. J Ethnopharmacol. 2012;139(2):605-15. https://doi.org/10.1016/j.jep.2011.12.001