DOI QR코드

DOI QR Code

Biodegradation of Low-Density Polyethylene by Acinetobacter guillouiae PL211 Isolated from the Waste Treatment Facility

  • Ye-Jin Kim (Department of Bioengineering and Technology, Kangwon National University) ;
  • Jang-Sub Lee (Department of Bioengineering and Technology, Kangwon National University) ;
  • Jeong-Ann Park (Department of Environmental Engineering, Kangwon National University) ;
  • Hyun-Ouk Kim (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kwang Suk Lim (Department of Bioengineering and Technology, Kangwon National University) ;
  • Suk-Jin Ha (Department of Bioengineering and Technology, Kangwon National University)
  • Received : 2024.04.04
  • Accepted : 2024.06.07
  • Published : 2024.06.28

Abstract

Plastics are consistently produced owing to their practicality and convenience. Unmanaged plastics enter the oceans, where they adversely impact marine life, and their degradation into nano-plastics due to sunlight and weathering is of concern for all living beings. Nano-plastics affect humans via the food chain, emphasizing the necessity for effective solutions. Microbial biodegradation has been suggested as a solution, offering the advantages of minimal environmental impact and the utilization of decomposition byproducts in microbial metabolic pathways. In this study, fifty-seven bacterial strains were isolated and identified from a waste-treatment facility. Cultivation in a minimum medium with low-density polyethylene (LDPE) beads as the sole carbon source resulted in the selection of the LDPE-degrading strain Acinetobacter guillouiae PL211. The selected strain was cultured at high cell density with LDPE as a carbon source, and Fourier transform infrared (FT-IR) analysis confirmed chemical changes on the LDPE bead's surface. Field-emission scanning electron microscopy (FE-SEM) analysis revealed substantial biodegradation of the LDPE surface. These results demonstrated the capability of A. guillouiae PL211 to biodegrade LDPE beads. This discovery demonstrates the potential of an environmentally friendly process to addressing polyethylene waste issues.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF).

References

  1. Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3: e1700782.
  2. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. 2015. Plastic waste inputs from land into the ocean. Science 347: 768-771.
  3. Law KL. 2017. Plastics in the marine environment. Ann. Rev. Mar. Sci. 9: 205-229.
  4. de Sousa FDB. 2021. The role of plastic concerning the sustainable development goals: The literature point of view. Clean. Responsible Consum. 3: 100020.
  5. Gourmelon G. 2015. Global plastic production rises, recycling lags. Vital. Signs. 22: 91-95.
  6. Silva AB, Bastos AS, Justino CI, da Costa JP, Duarte AC, Rocha-Santos TA. 2018. Microplastics in the environment: Challenges in analytical chemistry-A review. Anal. Chim. Acta 1017: 1-19.
  7. Schwarz A, Ligthart T, Boukris E, Van Harmelen T. 2019. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: a review study. Mar. Pollut. Bull. 143: 92-100.
  8. Gall SC, Thompson RC. 2015. The impact of debris on marine life. Mar. Pollut. Bull. 92: 170-179.
  9. Eerkes-Medrano D, Thompson RC, Aldridge DC. 2015. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75: 63-82.
  10. Vethaak AD, Legler J. 2021. Microplastics and human health. Science 371: 672-674.
  11. Zhang Y, Pedersen JN, Eser BE, Guo Z. 2022. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv. 60: 107991.
  12. Bardaji DKR, Moretto JAS, Furlan JPR, Stehling EG. 2020. A mini-review: current advances in polyethylene biodegradation. World J. Microbiol. Biotechnol. 36: 32.
  13. Gajendiran A, Krishnamoorthy S, Abraham J. 2016. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech. 6: 52.
  14. Contat-Rodrigo L, Ribes Greus A. 2002. Biodegradation studies of LDPE filled with biodegradable additives: Morphological changes. I. J. Appl. Polym. Sci. 83: 1683-1691.
  15. Ohtake Y, Kobayashi T, Asabe H, Murakami N. 1998. Studies on biodegradation of LDPE-observation of LDPE films scattered in agricultural fields or in garden soil. Polym. Degrad. Stab. 60: 79-84.
  16. Zahra S, Abbas SS, Mahsa M-T, Mohsen N. 2010. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manag. 30: 396-401.
  17. Bastioli C. 2020. Handbook of biodegradable polymers, pp. 455-472. Ed. Walter de Gruyter GmbH & Co KG.
  18. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. 2016. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351: 1196-1199.
  19. Amobonye A, Bhagwat P, Singh S, Pillai S. 2021. Plastic biodegradation: Frontline microbes and their enzymes. Sci. Total Environ. 759: 143536.
  20. Jadaun JS, Bansal S, Sonthalia A, Rai AK, Singh SP. 2022. Biodegradation of plastics for sustainable environment. Bioresour. Technol. 347: 126697.
  21. Gu J-D. 2003. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int. Biodeter. Biodegr. 52: 69-91.
  22. Bonhomme S, Cuer A, Delort A, Lemaire J, Sancelme M, Scott G. 2003. Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 81: 441-452.
  23. Albertsson A-C, Andersson SO, Karlsson S. 1987. The mechanism of biodegradation of polyethylene. Polym. Degrad. Stab. 18: 73-87.
  24. Ghatge S, Yang Y, Ahn J-H, Hur H-G. 2020. Biodegradation of polyethylene: a brief review. Appl. Biol. Chem. 63: 1-14.
  25. Zhang H, Lu Y, Wu H, Liu Q, Sun W. 2023. Effect of an Acinetobacter pittobacter on low-density polyethylene. Environ. Sci. Pollut. Res. 30: 10495-10504.
  26. Pathak VM. 2023. Exploitation of bacterial strains for microplastics (LDPE) biodegradation. Chemosphere 316: 137845.
  27. Peixoto J, Silva LP, Kruger RH. 2017. Brazilian cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J. Hazard. Mater. 324: 634-644.
  28. Nowak B, Pajak J, Drozd-Bratkowicz M, Rymarz G. 2011. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int. Biodeter. Biodegr. 65: 757-767.
  29. Hou L, Xi J, Liu J, Wang P, Xu T, Liu T, et al. 2022. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 286: 131758.
  30. Ogihara T. 2006. Oxidative degradation of polyethylene in nitrogen dioxide. Bull. Chem. Soc. Japan 36: 58-63.
  31. Yao Z, Seong HJ, Jang Y-S. 2022. Degradation of low density polyethylene by Bacillus species. Appl. Biol. Chem. 65: 84.