• Title/Summary/Keyword: Acinetobacter guillouiae

Search Result 3, Processing Time 0.017 seconds

Biodegradation of Low-Density Polyethylene by Acinetobacter guillouiae PL211 Isolated from the Waste Treatment Facility

  • Ye-Jin Kim;Jang-Sub Lee;Jeong-Ann Park;Hyun-Ouk Kim;Kwang Suk Lim;Suk-Jin Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.189-194
    • /
    • 2024
  • Plastics are consistently produced owing to their practicality and convenience. Unmanaged plastics enter the oceans, where they adversely impact marine life, and their degradation into nano-plastics due to sunlight and weathering is of concern for all living beings. Nano-plastics affect humans via the food chain, emphasizing the necessity for effective solutions. Microbial biodegradation has been suggested as a solution, offering the advantages of minimal environmental impact and the utilization of decomposition byproducts in microbial metabolic pathways. In this study, fifty-seven bacterial strains were isolated and identified from a waste-treatment facility. Cultivation in a minimum medium with low-density polyethylene (LDPE) beads as the sole carbon source resulted in the selection of the LDPE-degrading strain Acinetobacter guillouiae PL211. The selected strain was cultured at high cell density with LDPE as a carbon source, and Fourier transform infrared (FT-IR) analysis confirmed chemical changes on the LDPE bead's surface. Field-emission scanning electron microscopy (FE-SEM) analysis revealed substantial biodegradation of the LDPE surface. These results demonstrated the capability of A. guillouiae PL211 to biodegrade LDPE beads. This discovery demonstrates the potential of an environmentally friendly process to addressing polyethylene waste issues.

Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5

  • Kwon, Hyeok-Do;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.903-909
    • /
    • 2015
  • Indole-3-acetic acid (IAA) production is a typical mechanism of plant growth promotion by some rhizobacteria. However, a functional genomic study is necessary to unravel the function and mechanism of IAA signaling during rhizobacteria-plant interactions. In this study, the expression of SlIAA1 and SlIAA9 among the auxin response genes in tomato was examined during the interaction between IAA-producing Acinetobacter guillouiae SW5 and tomato plants. When 3-day grown tomato seedlings were treated for 30 min with 10~100 µM of IAA produced by bacteria from tryptophan, the relative mRNA levels of SlIAA1 and SlIAA9 increased significantly compared with those of the control, demonstrating that IAA produced by this bacterium can induce the expressions of both genes. Inoculation of live A. guillouiae SW5 to tomato seedlings also increased the expressions of SlIAA1 and SlIAA9, with more mRNA produced at higher bacterial density. In contrast, treatment of tomato seedlings with dead A. guillouiae SW5 did not significantly affect the expression of SlIAA1and SlIAA9. When 3-day bacterial culture in tomato root exudates was administered to tomato seedlings, the relative mRNA level of SlIAA1 increased. This result indicated that the plant may take up IAA produced by bacteria in plant root exudates, which may increase the expression of the auxin response genes, with resulting promotion of plant growth.

Interactions between Biosynthetic Pathway and Productivity of IAA in Some Rhizobacteria (근권에서 분리한 세균의 IAA 생합성 경로와 IAA 생성능과의 관계)

  • Kim, Woon-Jin;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study explores the interaction between the production of indole-3-acetic acid (IAA), a typical phytohormone auxin and the role of IAA biosynthetic pathways in each IAA producing rhizobacterial strain. The bacterial strains were isolated from rhizosphere of wild plants and identified as Acinetobacter guillouiae SW5, Bacillus thuringiensis SW17, Rhodococcus equi SW9, and Lysinibacillus fusiformis SW13. A. guillouiae SW5 exhibited the highest production of IAA using tryptophan-dependent pathways among the 4 strains. When indole-3-acetamide (IAM) was added, Rhodococcus equi SW9 showed the highest IAA production of $3824{\mu}g/mg$ protein using amidase activity. A. guillouiae SW5 also showed the highest production of IAA using two pathways with indole-3-acetonitrile (IAN), and its nitrile hydratase activity might be higher than nitrilase. B. thuringiensis SW17 showed the lowest IAA production, and most of IAA might be produced by the amidase activity, although the nitrilase activity was the highest among 4 strains. The roles of nitrile converting enzymes were relatively similar in IAA synthesis by Lysinibacillus fusiformis SW13. Tryptophan-independent pathway of IAA production was utilized by only A. guillouiae SW5.