Acknowledgement
This research was supported by funds from the National Natural Science Foundation of China No. 12101206.
References
- L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampere, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), no. 2, 209-252. https://doi.org/10.1002/cpa.3160380206
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampere equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369-402. https://doi.org/10.1002/cpa.3160370306
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), no. 3-4, 261-301. https://doi.org/10.1007/BF02392544
- C. Chen, W. Dong, and F. Han, Interior Hessian estimates for a class of Hessian type equations, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 52, 15 pp. https://doi.org/10.1007/s00526-022-02385-3
- C. Chen and W. Wei, The Neumann problem of complex Hessian quotient equations, Int. Math. Res. Not. IMRN 2021 (2021), no. 23, 17652-17672. https://doi.org/10.1093/imrn/rnaa081
- C. Chen and D. Zhang, The Neumann problem of Hessian quotient equations, Bull. Math. Sci. 11 (2021), no. 1, Paper No. 2050018, 26 pp. https://doi.org/10.1142/S1664360720500186
- P. Cherrier and A. Hanani, Le probleme de Dirichlet pour les equations de Monge-Ampere en metrique hermitienne, Bull. Sci. Math. 123 (1999), no. 7, 577-597. https://doi.org/10.1016/S0007-4497(99)00115-3
- T. C. Collins and S. Picard, The Dirichlet problem for the k-Hessian equation on a complex manifold, Amer. J. Math. 144 (2022), no. 6, 1641-1680. https://doi.org/10.1353/ajm.2022.0040
- S. Dinew and S. Ko lodziej, Liouville and Calabi-Yau type theorems for complex Hessian equations, Amer. J. Math. 139 (2017), no. 2, 403-415. https://doi.org/10.1353/ajm.2017.0009
- W. Dong and W. Wei, The Neumann problem for a type of fully nonlinear complex equations, J. Differential Equations 306 (2022), 525-546. https://doi.org/10.1016/j.jde.2021.10.040
- H. Fang, M. Lai, and X. Ma, On a class of fully nonlinear flows in Kahler geometry, J. Reine Angew. Math. 653 (2011), 189-220. https://doi.org/10.1515/CRELLE.2011.027
- K. Feng, H. B. Ge, and T. Zheng, The Dirichlet problem of fully nonlinear equations on Hermitian manifolds, Beijing: Peking University, 2020. arXiv:1905.02412v4
- D. Gu and N. C. Nguyen, The Dirichlet problem for a complex Hessian equation on compact Hermitian manifolds with boundary, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 4, 1189-1248.
- B. Guan and Q. Li, Complex Monge-Ampere equations and totally real submanifolds, Adv. Math. 225 (2010), no. 3, 1185-1223. https://doi.org/10.1016/j.aim.2010.03.019
- B. Guan and Q. Li, A Monge-Ampere type fully nonlinear equation on Hermitian manifolds, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 6, 1991-1999. https://doi.org/10.3934/dcdsb.2012.17.1991
- B. Guan and Q. Li, The Dirichlet problem for a complex Monge-Ampere type equation on Hermitian manifolds, Adv. Math. 246 (2013), 351-367. https://doi.org/10.1016/j.aim.2013.07.006
- B. Guan and W. Sun, On a class of fully nonlinear elliptic equations on Hermitian manifolds, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 901-916. https://doi.org/10.1007/s00526-014-0810-1
- Z. Hou, X. Ma, and D. Wu, A second order estimate for complex Hessian equations on a compact Kahler manifold, Math. Res. Lett. 17 (2010), no. 3, 547-561. https://doi.org/10.4310/MRL.2010.v17.n3.a12
- N. M. Ivochkina, Solution of the Dirichlet problem for certain equations of Monge-Ampere type, Mat. Sb. (N.S.) 128(170) (1985), no. 3, 403-415, 447.
- H. Jiao and T. Wang, The Dirichlet problem for a class of Hessian type equations, J. Math. Anal. Appl. 453 (2017), no. 1, 509-528. https://doi.org/10.1016/j.jmaa.2017.04.015
- S.-Y. Li, On the Neumann problems for complex Monge-Ampere equations, Indiana Univ. Math. J. 43 (1994), no. 4, 1099-1122. https://doi.org/10.1512/iumj.1994.43.43048
- P.-L. Lions, N. S. Trudinger, and J. I. E. Urbas, The Neumann problem for equations of Monge-Ampere type, Comm. Pure Appl. Math. 39 (1986), no. 4, 539-563. https://doi.org/10.1002/cpa.3160390405
- X. Ma and G. Qiu, The Neumann problem for Hessian equations, Comm. Math. Phys. 366 (2019), no. 1, 1-28. https://doi.org/10.1007/s00220-019-03339-1
- X. Ma, G. Qiu, and J. J. Xu, Gradient estimates on Hessian equations for Neumann problem, Sci. Sin. Math. 46 (2016), 1-10. https://doi.org/10.1360/N012014-00278
- G. Qiu, Neumann problems for Hessian equations and geometric applications, [Ph D Thesis]. Hefei: University of Sciences and Technology of China, 2016.
- G. Qiu and C. Xia, Classical Neumann problems for Hessian equations and Alexandrov-Fenchel's inequalities, Int. Math. Res. Not. IMRN 2019 (2019), no. 20, 6285-6303. https://doi.org/10.1093/imrn/rnx296
- J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math. 61 (2008), no. 2, 210-229. https://doi.org/10.1002/cpa.20182
- W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: L∞ estimate, Comm. Pure Appl. Math. 70 (2017), no. 1, 172-199. https://doi.org/10.1002/cpa.21652
- G. Szekelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom. 109 (2018), no. 2, 337-378. https://doi.org/10.4310/jdg/1527040875
- V. Tosatti and B. Weinkove, Estimates for the complex Monge-Ampere equation on Hermitian and balanced manifolds, Asian J. Math. 14 (2010), no. 1, 19-40. https://doi.org/10.4310/AJM.2010.v14.n1.a3
- V. Tosatti and B. Weinkove, The complex Monge-Ampere equation on compact Hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4, 1187-1195. https://doi.org/10.1090/S0894-0347-2010-00673-X
- N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), no. 2, 151-164. https://doi.org/10.1007/BF02393303
- S.-T. Yau, On the Ricci curvature of a compact Kahler manifold and the complex Monge-Ampere equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. https://doi.org/10.1002/cpa.3160310304
- D. Zhang, Hessian equations on closed Hermitian manifolds, Pacific J. Math. 291 (2017), no. 2, 485-510. https://doi.org/10.2140/pjm.2017.291.485