Acknowledgement
We are very grateful to the reviewer for his/her very constructive comments and helpful suggestions. This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number B2023-28-07.
References
- A. Ambroso, C. Chalons, F. Coquel, and T. Gali'e, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, M2AN Math. Model. Numer. Anal. 43 (2009), no. 6, 1063-1097. https://doi.org/10.1051/m2an/2009038
- A. Ambroso, C. Chalons, P.-A. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow, Computers and Fluids, 54 (2012), 67-91. https://doi.org/10.1016/j.compfluid.2011.10.004
- E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput. 25 (2004), no. 6, 2050-2065. https://doi.org/10.1137/S1064827503431090
- M. Baudin, F. Coquel, and Q.-H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline, SIAM J. Sci. Comput. 27 (2005), no. 3, 914-936. https://doi.org/10.1137/030601624
- R. Botchorishvili, B. Perthame, and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources, Math. Comp. 72 (2003), no. 241, 131-157. https://doi.org/10.1090/S0025-5718-01-01371-0
- R. Botchorishvili and O. Pironneau, Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws, J. Comput. Phys. 187 (2003), no. 2, 391-427. https://doi.org/10.1016/S0021-9991(03)00086-X
- A. Chinnayya, A.-Y. LeRoux, and N. Seguin, A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon, Int. J. Finite Vol. 1 (2004), no. 1, 33 pp.
- F. Coquel, J.-M. Herard, K. Saleh, and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows, Commun. Math. Sci. 12 (2014), no. 3, 593-600. https://doi.org/10.4310/CMS.2014.v12.n3.a10
- D. H. Cuong and M. D. Thanh, A Godunov-type scheme for the isentropic model of a fluid flow in a nozzle with variable cross-section, Appl. Math. Comput. 256 (2015), 602-629. https://doi.org/10.1016/j.amc.2015.01.024
- D. H. Cuong and M. D. Thanh, A well-balanced van Leer-type numerical scheme for shallow water equations with variable topography, Adv. Comput. Math. 43 (2017), no. 5, 1197-1225. https://doi.org/10.1007/s10444-017-9521-4
- D. H. Cuong and M. D. Thanh, A high-resolution van Leer-type scheme for a model of fluid flows in a nozzle with variable cross-section, J. Korean Math. Soc. 54 (2017), no. 1, 141-175. https://doi.org/10.4134/JKMS.j150616
- G. Dal Maso, P. G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9) 74 (1995), no. 6, 483-548.
- U. S. Fjordholm, S. Mishra, and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phys. 230 (2011), no. 14, 5587-5609. https://doi.org/10.1016/j.jcp.2011.03.042
- J. M. Gallardo, C. Par'es, and M. Castro, On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comput. Phys. 227 (2007), no. 1, 574-601. https://doi.org/10.1016/j.jcp.2007.08.007
- T. Gallouet, J.-M. Herard, N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Comput. & Fluids, 32 (2003), 479-513. https://doi.org/10.1016/S0045-7930(02)00011-7
- P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincar'e C Anal. Non Lineaire 21 (2004), no. 6, 881-902. https://doi.org/10.1016/j.anihpc.2004.02.002
- J. M. Greenberg and A. Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 1-16. https://doi.org/10.1137/0733001
- T. Y. Hou and P. G. LeFloch, Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comp. 62 (1994), no. 206, 497-530. https://doi.org/10.2307/2153520
- E. Isaacson and B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math. 52 (1992), no. 5, 1260-1278. https://doi.org/10.1137/0152073
- E. Isaacson and B. Temple, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995), no. 3, 625-640. https://doi.org/10.1137/S0036139992240711
- B. L. Keyfitz, R. Sanders, and M. Sever, Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow, Discrete Contin. Dyn. Syst. Ser. B 3 (2003), no. 4, 541-563. https://doi.org/10.3934/dcdsb.2003.3.541
- P. G. LeFloch and M. D. Thanh, The Riemann problem for the shallow water equations with discontinuous topography, Commun. Math. Sci. 5 (2007), no. 4, 865-885. http://projecteuclid.org/euclid.cms/1199377555 https://doi.org/10.4310/CMS.2007.v5.n4.a7
- P. G. LeFloch and M. D. Thanh, A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime, J. Comput. Phys. 230 (2011), no. 20, 7631-7660. https://doi.org/10.1016/j.jcp.2011.06.017
- D. Marchesin and P. J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation, Comput. Math. Appl. Part A 12 (1986), no. 4-5, 433-455. https://doi.org/10.1016/0898-1221(86)90173-2
- M. Ricchiuto and A. Bollermann, Stabilized residual distribution for shallow water simulations, J. Comput. Phys. 228 (2009), no. 4, 1071-1115. https://doi.org/10.1016/j.jcp.2008.10.020
- R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (1999), no. 2, 425-467. https://doi.org/10.1006/jcph.1999.6187
- D. W. Schwendeman, C. W. Wahle, and A. K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys. 212 (2006), no. 2, 490-526. https://doi.org/10.1016/j.jcp.2005.07.012
- M. D. Thanh, The Riemann problem for a nonisentropic fluid in a nozzle with discontinuous cross-sectional area, SIAM J. Appl. Math. 69 (2009), no. 6, 1501-1519. https://doi.org/10.1137/080724095
- M. D. Thanh, A phase decomposition approach and the Riemann problem for a model of two-phase flows, J. Math. Anal. Appl. 418 (2014), no. 2, 569-594. https://doi.org/10.1016/j.jmaa.2014.04.012
- M. D. Thanh, D. H. Cuong, and D. X. Vinh, The resonant cases and the Riemann problem for a model of two-phase flows, J. Math. Anal. Appl. 494 (2021), no. 1, Paper No. 124578, 28 pp. https://doi.org/10.1016/j.jmaa.2020.124578
- N. X. Thanh, M. D. Thanh, and D. H. Cuong, Dimensional splitting well-balanced schemes on Cartesian mesh for 2D shallow water equations with variable topography, Bull. Iranian Math. Soc. 48 (2022), no. 5, 2321-2348. https://doi.org/10.1007/s41980-021-00648-x
- B. Tian, E. F. Toro, and C. E. Castro, A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver, Comput. & Fluids 46 (2011), 122-132. https://doi.org/10.1016/j.compfluid.2011.01.038