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THE NEUMANN PROBLEM FOR A CLASS OF

COMPLEX HESSIAN QUOTIENT EQUATIONS

Yuying Qian, Qiang Tu, and Chenyue Xue

Abstract. In this paper, we study the Neumann problem for the com-

plex Hessian quotient equation
σk(τ∆uI+∂∂̄u)

σl(τ∆uI+∂∂̄u)
= ψ with 0 ≤ l < k ≤ n.

We prove a priori estimate and global C1 estimates, in particular, we use

the double normal second derivatives on the boundary to establish the

global C2 estimates and prove the existence and the uniqueness for the
Neumann problem of the above complex Hessian quotient equation.

1. Introduction

In this paper, we consider the Neumann problem for following fully nonlinear
second order elliptic partial differential equations

(1.1)
σk(τ∆uI + ∂∂̄u)

σl(τ∆uI + ∂∂̄u)
= ψ(z), in Ω ⊂ Cn,

where Ω is a C4 domain in Cn with the unit outer normal vector ν on ∂Ω. ψ
is a smooth positive function in Ω. Denote by U = τ∆uI + ∂∂̄u with τ ≥ 0,
λ[U ] = (λ1, . . . , λn) are the eigenvalues of U . Then

σk(τ∆uI + ∂∂̄u) = σk(λ[U ]) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik .

Recall that the Garding’s cone is defined as

Γk = {λ ∈ Rn : σj(λ) > 0,∀ 1 ≤ j ≤ k}.

To ensure the ellipticity of (1.1), we need λ[U ] ∈ Γk. Hence we introduce the
following definition.
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Definition 1.1. A real value function u ∈ C2(Ω) is called (η, k)-admissible if
λ[U ] ∈ Γk for any z ∈ Ω.

If τ = 0, (1.1) is known as the classic Hessian quotient equation. The
corresponding Dirichlet problem or Neumann problem have been studied ex-
tensively in the past four decades for the real case. For example, Caffarelli-
Nirenberg-Spruck [2] and Ivochkina [19] have solved the Dirichlet problem
of Monge-Ampère equation, Caffarelli-Nirenberg-Spruck [3] have solved the
Dirichlet problem of k-Hessian equation. The Dirichlet problem for the general
Hessian quotient equation was solved by Trudinger in [32]. In 1986, Lions-
Trudinger-Urbas solved the Neumann problem of Monge-Ampère equation in
[22]. The Neumann problem of k-Hessian equations was solved by Ma-Qiu
[23], and Chen-Zhang [6] generalized the result to the Neumann problem of
Hessian quotient equations. Chen-Wei [5] have solved the Neumann problem
of Hessian quotient equations in the complex case. Some other fully nonlinear
equations with Dirichlet boundary and Neumann boundary were also studied
in [4, 10,24–26].

In the complex setting, the Hessian quotient equations are related to many
important problems in both Kähler and non-Kähler geometry. It is well known
that the complex Monge-Ampère equation (τ = 0, k = n, l = 0) was solved by
Yau [33] on closed Kähler manifolds in the resolution of the Calabi conjecture.
It is worth pointing out that the works of Yau connect the geometry and partial
differential equations. Then Tosatti-Weinkove [30,31] have solved the analogous
problem for the equation on closed Hermitian manifolds. The corresponding
Dirichlet problem on strongly pseudo-convex domains was solved by Caffarelli-
Kohn-Nirenberg-Spruck [1] in their milestone work. Then Cherrier-Hanani [7]
and Guan-Li [14–16] extended [1]’s results to complex manifolds. After Yau
and Caffarelli-Kohn-Nirenberg-Spruck’s works, the fully nonlinear equations in
complex domain or manifolds attracted many mathematicians in partial differ-
ential equations. For complex Hessian equation (τ = 0, l = 0), Hou-Ma-Wu [18]
established the second order estimates for the equation without boundary on
Kähler manifold, and then Dinew-Kolodziej [9] solved the equation by combin-
ing the Liouville theorem and Hou-Ma-Wu’s results. Zhang [34] and Székelyhidi
[29] have solved the equation without boundary on Hermitian manifolds. Gu-
Nguyen [13] were able to obtain continuous solutions to the complex Hessian
equation with boundary on Hermitian manifolds, and Collins-Picard [8] solved
the same problem under the existence of a subsolution. For Hessian quotient
equation, the (n, n − 1)-Hessian quotient equation have appeared in a prob-
lem proposed by Donaldson in the setting of moment maps and was solved by
Song-Weinkove [27]. Then (n, l)-Hessian quotient equation was considered by
Fang-Lai-Ma [11] on Kähler manifolds, and by Guan-Li [15], Guan-Sun [17] on
Hermitian manifolds. The general (k, l)-Hessian quotient equation with k < n
without boundary on Hermitian manifolds was studied by Székelyhidi [29] and
by Sun [28]. The corresponding Dirichlet problem on Hermitian manifolds was
studied by Feng-Ge-Zheng [12].
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Recently, Jiao-Wang [20] consider the Dirichlet problem for a class of fully
nonlinear elliptic equation in Euclidean space,

f(τ∆u+D2u) = ψ in Ω,

which is arising form conformal geometry. The development of the Neumann
boundary problem for fully nonlinear equation is one of the motivations for
us to study the corresponding Hessian quotient equation. In this article we
want to know about the Neumann problem of the following complex Hessian
quotient equations

(1.2)


σk(τ∆uI + ∂∂̄u)

σl(τ∆uI + ∂∂̄u)
= ψ(z), in Ω,

uν = −βu+ ϕ(z), on ∂Ω,

where 0 ≤ l < k ≤ n, β is a positive constant, ν is the unit outer normal vector
on ∂Ω. The main theorem is as follows.

Theorem 1.2. Let Ω ⊂ Cn be a domain with C4 boundary, τ > 0, ϕ ∈ C3(∂Ω)
and 0 < ψ ∈ C2(Ω). Then there exists a unique (η, k)-admissible solution
u ∈ C3,α(Ω) (0 < α < 1) for the Neumann problem (1.2).

Remark 1.3. The key proof for Theorem 1.2 is to establish the a priori estimates
for equation (1.2), and then the existence result easily follows by the continuity
method. The presence of τ > 0 is crucial to the global estimates for second
derivatives. For τ = 0, Chen-Zhang [6] obtain the global C2 estimates for
equation(1.2) by some important inequalities of real Hessian quotient operator.

Following the same methods for real equation, we can obtain the existence
results for the real counterpart of equation (1.2).

Theorem 1.4. Let Ω ⊂ Rn be a domain with C4 boundary, ϕ ∈ C3(∂Ω) and
0 < ψ ∈ C2(Ω). Then there exists a unique k-admissible solution u ∈ C3,α(Ω)
for 0 < α < 1 to the Neumann problem

(1.3)


σk(τ∆uI +D2u)

σl(τ∆uI +D2u)
= ψ(x), in Ω,

uν = −βu+ ϕ(x), on ∂Ω,

for any 1 ≤ l < k ≤ n and β is a positive constant, where ν is the unit outer
normal vector on ∂Ω.

The rest of this paper is organized as follows. In Section 2 we recall some
properties of the elementary symmetric function σk and prove key lemma. In
Section 3 we prove the C0 estimates and gradient estimates. In Section 4 the
second order estimates are derived. In Section 5, we prove the existence of a
solution.
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2. Preliminaries

Let λ = (λ1, . . . , λn) ∈ Rn, we recall the definition of elementary symmetric
functions for 1 ≤ k ≤ n,

σk(λ) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik .

The Garding cone is defined by Γk = {λ ∈ Rn : σi(λ) > 0,∀ 1 ≤ i ≤ k}. We

denote σk−1(λ|i) = ∂σk

∂λi
and σk−2(λ|ij) = ∂2σk

∂λi∂λj
. Next, we list some properties

of σk which will be used later.

Lemma 2.1. Let λ = (λ1, . . . , λn) ∈ Rn with λ ∈ Γk and 1 ≤ k ≤ n. Then we
have

(1) σk−1(λ|i) > 0 for 1 ≤ i ≤ n;
(2) σk(λ) = σk(λ|i) + λiσk−1(λ|i) for 1 ≤ i ≤ n;
(3) If λ1 ≥ λ2 ≥ · · · ≥ λn, then σk−1(λ|1) ≤ σk−1(λ|2) ≤ · · · ≤ σk−1(λ|n);
(4)

∑n
i=1 σk−1(λ|i) = (n− k + 1)σk−1(λ);

(5) If λ1 ≥ λ2 ≥ · · · ≥ λn, then we have

σk−1(λ|k) ≥ Cn,k

∑
i

σk−1(λ|i),

where Cn,k is a positive constant only depending on n and k;
(6) If λ1 ≥ λ2 ≥ · · · ≥ λn, we have σk−1(λ|k) ≥ Cn,kσk−1(λ);
(7) If n ≥ k > l ≥ 0, n ≥ r > s ≥ 0, k ≥ r, and l ≥ s, we have[

σk(λ)/C
k
n

σl(λ)/Cl
n

] 1
k−l

≤

[
σr(λ)/C

r
n

σs(λ)/Cs
n

] 1
r−s

;

(8) If λ = (λ1, . . . , λn) ∈ Γk, then [σk(λ)
σl(λ)

]
1

k−l (0 ≤ l < k ≤ n) are concave

with respect to λ. Hence, for any (ξ1, . . . , ξn), we have

∑
i,j

∂2[σk(λ)
σl(λ)

]

∂λi∂λj
ξiξj ≤ (1− 1

k − l
)

[∑
i

∂[
σk(λ)

σl(λ)
]

∂λi
ξi

]2

σk(λ)
σl(λ)

.

Let z = (z1, . . . , zn) be a point in Cn. Given ξ ∈ R2n, Dξu denote the
directional derivative of u along ξ. For the complex variables, we use the
following notations:

∂ku =
∂u

∂zk
, ∂ku =

∂u

∂zk
, ∂iju =

∂2u

∂zi∂zj
, ∂ijk =

∂3u

∂zi∂zj∂zk
.

For simplicity, we write ui = ∂iu, uij = ∂iju, uijk = ∂ijku, and so on. It holds
that

(2.1) |∇u|2 :=

n∑
j=1

∂ju∂ju =
1

4
|Du|2.
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Then in complex coordinates, we denote by ηij ≡ τ∆uδij+uij . Let λ ≡ λ(uij)=

(λ1, . . . , λn) be the eigenvalues of {uij} and η ≡ λ(η(uij))=(η1, . . . , ηn) be the

eigenvalues of {ηij}. Then we can get ηi = τ
∑n

j=1λj +λi. With our notations,

equation (1.1) can be written as

(2.2) f(λ) = F (uij) = G(ηij) =

(
σk
σl

) 1
k−l

(ηij) = ψ̃(z, u) = ψ
1

k−l .

For convenience, we also can introduce the following notations:

F ij =
∂F

∂uij
, F ij,kl =

∂2F

∂uij∂ukl
, Gij =

∂G

∂ηij
, Gij,kl =

∂2G

∂ηij∂ηkl
.

Let u be an admissible solution of equation (1.1), {uij} is diagonal at a single

point, equation (1.1) is expressed in the form

F ij̄ = fiδij with fi =
∂f

∂λi
.

In the following, we assume λ1 ≥ · · · ≥ λn, then we can get η1 ≥ · · · ≥ ηn,
which implies σl(η|1) ≤ · · · ≤ σl(η|n) for 1 ≤ l ≤ k − 1. Therefore, at a point
z ∈ Ω where {uij(z)} is diagonal, we have

F ii =
∂F

∂uii
=

∂G

∂ηrs
· ∂ηrs
∂uii

= τ

n∑
k=1

Gkk +Gii.

Lemma 2.2. If λ = (λ1, . . . , λn) ∈ Γk, then [σk(η)
σl(η)

]
1

k−l (0 ≤ l < k ≤ n) are

concave with respect to λ.

Proof. It is equal to prove that for any (ξ1, . . . , ξn), we have

∑
i,j

∂2[σk(η)
σl(η)

]

∂λi∂λj
ξiξj ≤ (1− 1

k − l
)

[∑
i

∂[
σk(η)

σl(η)
]

∂λi
ξi

]2
σk(η)
σl(η)

.

By Lemma 2.1, we can obtain

∑
i,j

∂2[σk(η)
σl(η)

]

∂λi∂λj
ξiξj =

∑
i,j,a,b

∂2[σk(η)
σl(η)

]

∂ηa∂ηb

∂ηa
∂λi

∂ηb
∂λj

ξiξj

≤ (1− 1

k − l
)

[∑
a

∂[
σk(η)

σl(η)
]

∂ηa
(
∑

i
∂ηa

∂λi
ξi)

]2
σk(η)
σl(η)

≤ (1− 1

k − l
)

[∑
a,i

∂[
σk(η)

σl(η)
]

∂ηa

∂ηa

∂λi
ξi

]2
σk(η)
σl(η)
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≤ (1− 1

k − l
)

[∑
i

∂[
σk(η)

σl(η)
]

∂λi
ξi

]2
σk(η)
σl(η)

.
□

Lemma 2.3. Let 0 ≤ l < k ≤ n, r be an n× n Hermitian matrix, λ = λ(r) be
the eigenvalues of r with η = τ

∑n
j=1 λj · 1+ λ ∈ Γk. Then

f1 ≥ τ

nτ + 1
Cn,k,l

n∑
i=1

fi,

where 0 ≤ f1 ≤ · · · ≤ fn are the eigenvalues of {F ij(r)}, Cn,k,l is a constant
depending on n, k and l.

Proof. When l = 0, the results follows by the same method as in [10, Lemma 9].
Hence we only need to prove the lemma for l ≥ 1. Without loss of generality,
we assume that the matrix r is diagonal with λ1(r) ≥ · · · ≥ λn(r). Hence,
η1(r) ≥ · · · ≥ ηn(r). Direct calculations shows that

fi =
∂(

σk

σl
)

1
k−l (η)

∂ηp

∂ηp

∂λi

= 1
k−l (

σk
σl

)
1

k−l−1
∑
p

σk−1(η|p)(τ+δip)σl−σkσl−1(n|p)(τ+δip)

σ2
l (η)

= 1
k−l (

σk
σl

)
1

k−l−1 (τ + 1)σk−1(η|i)σl(η|i)(1− αi) + τ
∑

p ̸=i σk−1(η|p)σl(η|p)(1− αp)

σ2
l (η)

,

where αp is defined by

αp :=
σk(η|p)σl−1(η|p)
σk−1(η|p)σl(η|p)

, ∀p = 1, . . . , n.

Note that

σk−1(η|p) ≥ Cn,k

n∑
i=1

σk−1(η|i), σl(η|p) ≥ Cn,l

n∑
i=1

σl(η|i), ∀p ≥ k.(2.3)

We can divide into two cases:
Case 1: σk(η|p) > 0. We have η|p ∈ Γk since η ∈ Γk, η|p is the n-dimen-

sional vector with zero on the pth slot.
By Newton-MacLaurin inequality for 1 ≤ p ≤ n

αp ≤
Cl−1

n−1C
k
n−1

Cl
n−1C

k−1
n−1

=
l(n− k)

k(n− l)
,

that is to say

1− αp ≥ 1− l(n− k)

k(n− l)
=
n(k − l)

k(n− l)
.

Case 2: σk(η|p) ≤ 0. Then we have αp ≤ 0, and

1− αp ≥ 1 ≥ n(k − l)

k(n− l)
.
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Now we can estimate by (2.3)

f1 ≥ 1
k−l (

σk

σl
)

1
k−l−1

∑
p≥k

τσk−1(η|p)σl(η|p)(1−αp)

σ2
l (η)

≥ n(k−l)
k(n−l)

τ(n−k+1)
k−l Cn,kCn,l(

σk

σl
)

1
k−l−1 σk−1(η)σl(η)

σ2
l (η)

= τCn,k,l(
σk

σl
)

1
k−l−1 σk−1(η)

σl(η)

≥ Cn,k,l
τ

nτ+1

n∑
i=1

fi,

where the last equality is using the following equation

n∑
i=1

fi =
1

k−l (
σk

σl
)

1
k−l−1

[
(τ + 1)

∑n
i=1 σk−1(η|i)σl(η)−

∑n
i=1 σl−1(η|i)σk(η)

σ2
l (η)

+ τ
∑n

i=1

∑
p ̸=i σk−1(η|p)σl(η)−

∑n
i=1

∑
p̸=i σl−1(η|p)σk(η)

σ2
l (η)

]
= nτ+1

k−l (
σk

σl
)

1
k−l−1

∑n
i=1 σk−1(η|i)σl(η)−σk(η)σl−1(η|i)

σ2
l

≤ nτ+1
k−l (

σk

σl
)

1
k−l−1 1

σl

n∑
i=1

σk−1(η|i)

= (nτ+1)(n−k+1)
(k−l) (σk

σl
)

1
k−l−1 σk−1(η)

σl(η)
.

□

Remark 2.4. By Newton-Maclaurin inequality, if k > l ≥ 0, we see that∑
fi(λ) =

nτ+1
k−l (

σk

σl
)

1
k−l−1

∑n
i=1 σk−1(λ|i)σl−σkσl−1(λ|i)

σ2
l

= nτ+1
k−l (

σk

σl
)

1
k−l−1 (n−k+1)σk−1σl−(n−l+1)σl−1σk

σ2
l

= (nτ+1)(n−k+1)
k−l (σk

σl
)

1
k−l

σk−1

σk
− (nτ+1)(n−l+1)

k−l (σk

σl
)

1
k−l

σl−1

σl

= (nτ + 1)(σk

σl
)

1
k−l [

kCk
nσk−1

(k−l)Ck−1
n σk

− lCl
nσl−1

(k−l)Cl−1
n σl

]

= nτ+1
k−l (

σk

σl
)

1
k−l [k

σk−1C
k
n

σkC
k−1
n

− l
σl−1C

l
n

σlC
l−1
n

]

≥ (nτ + 1)(σk

σl
)

1
k−l

σk−1/C
k−1
n

σk/Ck
n

= (nτ + 1)[
σk/C

k
n

σl/Cl
n
]

1
k−l

σk−1/C
k−1
n

σk/Ck
n

[
Ck

n

Cl
n
]

1
k−l

≥ (nτ + 1)(
Ck

n

Cl
n
)

1
k−l := (nτ + 1)Cn,k,l(2.4)

for λ ∈ Rn with η ∈ Γk.

Proposition 2.5. If λ ∈ Rn with η ∈ Γk, the operator σk

σl
(η) is strictly elliptic

with respect to λ.
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3. C1 estimates

In this section, we prove the C1 estimates for the equation (1.2). We always
assume that the conditions in Theorem 1.2 hold.

3.1. C0 estimates

Theorem 3.1. Suppose u ∈ C2(Ω)∩C1(Ω) is an (η, k)-admissible solution to
(1.2). Then we have

|u|C0 ≤ nτ + 2

nτ + 1
C,

where C depends on n, k, l,Ω, β,max|ϕ|,max|ψ|.

Proof. On the one hand, suppose that u attains its maximum at z0 ∈ ∂Ω.
Hence,

0 ≤ Dνu(z0) = −βu(z0) + ϕ(z0).

Then we have

max
∂Ω

u = u(z0) ≤
1

β
ϕ(z0) ≤

1

β
max
∂Ω

|ϕ(z)|.

On the other hand, define a constant

B =
1

nτ + 1

[
Cl

n

Ck
n

max
Ω

|ψ|
] 1

k−l

.

Note that

σk(τ∆uI + ∂∂u)

σl(τ∆uI + ∂∂u)
= ψ(z)

≤ max
Ω
ψ =

σk(τ∆(B|z|2)I + ∂∂(B|z|2))
σl(τ∆(B|z|2)I + ∂∂(B|z|2))

.

Without loss of generality, we suppose 0 ∈ Ω, hence we know that the function
u−B|z|2 attains its minimum at a point z1 ∈ ∂Ω. It is immediate to see that

0 ≥ Dν(u−B|z|2)|z=z1 ≥ −βu(z1)−max
∂Ω

|ϕ| − 2Bdiam(Ω).

Therefore,

min
∂Ω

u ≥ min
∂Ω

(u−B|z|2)

≥ − 1

β
max
∂Ω

|ϕ| − 2B

β
diam(Ω)−Bdiam2(Ω)

≥ −nτ + 2

nτ + 1
C.

□
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3.2. Global gradient estimates

Theorem 3.2. Suppose u ∈ C3(Ω) is an (η, k)-admissible solution to (1.2).
Assume 0 ∈ Ω and Br(0) ⊂ Ω. Then, we have

|∇u|(0) ≤ C

r

√
nτ + 1

τ
,

where C depends on n, k, l,Ω, |u|C0 , inf ψ and |ψ|C1 .

Proof. Consider the following test function on Br(0) ⊂ Ω,

H(z) = ln |∇u|+ h(u) + ln ζ(z),

where ζ(z) = r2 − |z|2 and |∇u| =
√∑n

k=1 ukuk. Define

h(s) = δ(s+ L)2,(3.1)

here we set L := |u|C0 + 1, δ is a sufficiently small constant such that

h′′ − 4(h′)2 = 2δ − 16δ2(u+ L)2 ≥ δ.

Assume H attains its maximum at z0 ∈ Br(0). At z0, we have

(3.2) 0 = Hi =
|∇u|2i
2|∇u|2

+ h′ui +
ζi
ζ

and

0 ≥ F ijHij

= F ij |∇u|2
ij

2|∇u|2 −F
ij |∇u|2i |∇u|2

j

2|∇u|4 +h′F ijuij+h
′′F ijuiuj+F

ij ζij
ζ −F ij ζiζj

ζ2

= F ij |∇u|2
ij

2|∇u|2 −F
ij |∇u|2i |∇u|2

j

2|∇u|4 +h′F ijuij+h
′′F ijuiuj−

∑
F ii

ζ − F ijzizj
ζ2 .(3.3)

Assume that |∇u(z0)|2 ≥ 1. By Cauchy-Schwartz inequality and (3.2), we
obtain

F ij
|∇u|2i |∇u|2j
2|∇u|4

≤ 4(h′)2F ijuiuj +
4

ζ2
F ijζiζj .(3.4)

Direct calculation shows

F ij |∇u|2
ij
= F ij(ukiuk̄j̄ + uk̄iukj̄) + ukψ̃k̄ + uk̄ψ̃k.(3.5)

Combining with (3.3), (3.4), (3.5), Lemma 2.3 and Remark 2.4, we have

0 ≥ −C + δF ijuiuj −
1

ζ

n∑
i=1

F ii − 5r2

ζ2

n∑
i=1

F ii

≥ −C +
τ

nτ + 1
δCn,k,l|∇u|2

n∑
i=1

F ii − 6r2

ζ2

n∑
i=1

F ii.
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Assume |∇u(z0)|2 ≥ max
{

C
τ

nτ+1
δ
2Cn,k,l(nτ+1)Cn,k,l

, 1
}
. We arrive at

0 ≥
(

τ

nτ + 1

δCn,k,l

2
|∇u|2 − 6r2

ζ2

) n∑
i=1

F ii,

which implies

ζ2(z0)|∇u|2(z0) ≤
12r2

τ
nτ+1δCn,k,l

.

Therefore, by H(0) ≤ H(z0) and an easy calculation, we obtain

|∇u|(0) ≤ 1

r

√
12

δCn,k,l

nτ + 1

τ
.

□

Now we prove the global gradient estimates by the following proposition.

Theorem 3.3. Suppose u is a C3 (η, k)-admissible solution to (1.2). Then we
have

sup
Ω

|∇u| ≤
√
nτ + 1

τ
C,

where C depends on n, k, l, β,Ω, |u|C0 , |ϕ|C3 , inf ψ and |ψ|C1 .

Proof. Consider the following auxiliary function

T (z) = ln |∇w|+Ad+ h(u),

where w = u + (−βu + φ(z))d, d(z) = dist(z, ∂Ω), h is a smooth function
defined by (3.1), A is a positive constant to be determined later. Suppose that
G attains its maximum at z0 ∈ Ω, we divide the proof into three cases.

Case 1: z0 ∈ Ωµ := {x | d(z, ∂Ω) ≥ µ}. We can bound |∇u|(z0) by Theorem
3.2.

Case 2: z0 ∈ ∂Ω. We denote by φ̃ = −βu+ φ(z). Notice that

wν = uν + φ̃νd+ φ̃dν = 0; uν = φ̃ on ∂Ω.

Hence, at z0,

0 ≤ ∂

∂ν
T =

|∇w|2ν
2|∇w|2

+Adν + h′uν

=
1
2 (
∑2n−1

k=1 DkwDkνw +DνwDννw)

2|∇w|2
+Adν + h′uν

≤ sup
∂Ω

{|Πij |} −A+ h′(u)φ̃(z0, u),

where Πij is the second fundamental form of ∂Ω. We choose

A = sup
∂Ω

{|Πij |}+ sup
Ω

|h′||φ̃|+ 1,

which yields a contradiction to ∂T
∂ν < 0.
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Case 3: z0 ∈ Ω \ Ωµ. Hence at z0, we have

0 = Ti(z0) =
|∇w|2i
2|∇w|2

+Adi + h′ui,(3.6)

and

0 ≥ F ijTij

= F ij |∇w|2
ij

2|∇w|2 −2F ij |∇w|2i |∇w|2
j

4|∇w|4 +AF ijdij+h
′F ijuij+h

′′F ijuiuj

≥ F ij |∇w|2
ij

2|∇w|2 −4A2F ijdidj+(h′′ − 4(h′)2)F ijuiuj+AF
ijdij+h

′F ijuij ,(3.7)

where in the last inequality we used (3.6) and Cauchy-Schwarz inequality.
It is immediate to see that

F ij |∇w|2
ij
= wkF

ijwk̄ij̄ + F ijwkijwk + F ij(wkiwk̄j̄ + wkjwki).(3.8)

Recall that φ(z, u) = −βu+ ϕ(z). We have

F ijwk̄ij̄ = F ijuk̄ij̄ + F ij(φd)k̄ij̄

= F ij(−βuk̄idj − βuk̄j̄di − βuij̄dk − βuk̄dij̄ − βuidk̄j̄

− βuj̄dk̄i − βudk̄ij̄) + F ij(ϕ(x)d)k̄ij̄ + ψ̃k̄(1− βd).

By Cauchy-Schwarz inequality we get

F ijwkij̄wk̄ + wkF
ijwk̄ij̄ ≥ (ψ̃k̄wk + ψ̃kwk̄)(1− βd)− εF ij(ukiuk̄j̄ + ukj̄uk̄i)

− Cε

n∑
i=1

F īi(|∇u|2 + |∇u|+ 1),(3.9)

and

F ij(wkiwk̄j̄ + wkj̄wk̄i) ≥ (1− βd)2F ij(ukiuk̄j̄ + ukj̄uk̄i)(1− ε)

− Cε

n∑
i=1

F īi(|∇u|2 + |∇u|+ 1).(3.10)

Combining with (3.8), (3.9) and (3.10), we obtain

F ij |∇w|2ij̄ ≥ −C|∇u|2 − C

n∑
i=1

F īi(|∇u|2 + |∇u|+ 1),(3.11)

if we choose µ chosen sufficiently small. Substituting (3.11) into (3.7), we have

0 ≥ − C − C

n∑
i=1

F īi − 4A2F ijdidj̄

+
(
h′′ − 4(h′)2

)
F ijuiuj̄ +AF ijdij̄ + h′F ijuij̄ .(3.12)
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Note that h′ > 2δ, h′′ − 4(h′)2 > δ and

F ijuiuj̄ ≥
τ

nτ + 1
C
∑
i

F ii|∇u|2,
∑
i

F ii ≥ (nτ + 1)C,

(3.12) yields that

τ

nτ + 1
δC

n∑
i=1

F īi|∇u|2 ≤ C + C(1 +A2)
∑
i

F īi,

then, we have

|∇u|2 ≤ nτ + 1

τ
C.

Combining with Case 1, Case 2 and Case 3, the global gradient estimates is
completed. □

4. Global estimates for second derivatives

In this section, we prove the a priori estimates of global second-order deriva-
tives.

4.1. Reduce global second derivatives to double normal second
derivatives on the boundary

Theorem 4.1. Suppose u is a C4 (η, k)-admissible solution to (1.2). Then we
have

sup
(z,ζ)∈Ω×S2n−1

Dζζu(z) ≤ C

√
nτ + 1

τ
(1 + sup

∂Ω
|Dννu|),

where C depends on n, k, l, β,Ω, |u|C1 , inf ψ, |ψ|C2 and |ϕ|C3 .

Proof. We consider the function

Φ(z, ζ) = h(r)(Dζζu− v(z, ζ)) + |∇u|2,

where v(z, ζ)=alDlu+b, a
l=−2⟨ζ, ν⟩⟨ζ ′, Dνl⟩−2β⟨ζ, ν⟩(ζ ′)l, b=2⟨ζ, ν⟩⟨ζ ′, Dϕ⟩

and ζ ′ = ζ − ⟨ζ, ν⟩ν. The function h is defined by

h = e−Ar.

Here r ∈ C2(Ω) with r|∂Ω = 0 and Dνr = 1 on ∂Ω, A = 1+ 2max
∂Ω

{|Πij |}+ |β|
and Πij is the second fundamental form of the boundary.

Denote

max
(z,ζ)∈Ω×S2n−1

Φ(z, ζ) = Φ(z0, ζ0).

Then for ζ0 ∈ S2n−1, max
z∈Ω

Φ(z, ζ0) is attained at z0 ∈ Ω.

Case 1: z0 ∈ Ω.
Differentiating Φ at z0, we obtain

0 = Φi = h′ri(Dζ0ζ0u− v(z0, ζ0)) + h(r)(Dζ0ζ0u− v(z0, ζ0))i + ukuk̄i + uk̄uki,
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and

0 ≥ F ij̄Φij̄

= h′F ij̄rij̄(Dζ0ζ0u− v(z0, ζ0))

+ F ij̄h′′rirj̄(Dζ0ζ0u− v(z0, ζ0)) + h′riF
ij̄(Dζ0ζ0u− v(z0, ζ0))j̄

+ F ij̄h′rj̄(Dζ0ζ0u− v(z0, ζ0))i + hF ij̄(Dζ0ζ0u− v(z0, ζ0))ij̄

+ F ij̄(ukj̄uk̄i + uk̄j̄uki + ukuk̄ij̄ + uk̄ukij̄)

= 2h′F ij̄ri

(
−
h′rj̄(Dζ0ζ0u− v(z0, ζ0)) + ukuk̄j̄ + uk̄ukj̄

h

)
+ (h′F ij̄rij̄ + F ij̄h′′rirj̄)(Dζ0ζ0u− v(z0, ζ0)) + F ij̄(ukj̄uk̄i + uk̄j̄uki)

+ F ij̄(ukuk̄ij̄ + uk̄ukij̄) + hF ij̄(Dζ0ζ0u− v(z0, ζ0))ij̄ .

Note that

ψ̃ζ0ζ0 = Gij̄,kl̄ηij̄ζ0ηkl̄ζ0 +Gij̄ηij̄ζ0ζ0 ≤ Gij̄ηij̄ζ0ζ0 = F ij̄uij̄ζ0ζ0 ,

which implies that

0 ≥ −A2hF ij̄rirj̄(Dζ0ζ0u− v(z0, ζ0))− 2AF ij̄ri(ukuk̄j̄ + uk̄ukj̄)

−AhF ij̄rij̄(Dζ0ζ0u− v(z0, ζ0)) + F ij̄(ukj̄uk̄i + uk̄j̄uki) + ukψ̃k̄ + uk̄ψ̃k

+ hψ̃ζ0ζ0 − hF ij̄(alij̄Dlu+ 2ali(Dlu)j̄ + al(Dlu)ij̄ + bij̄).

By Cauchy-Schwarz inequality, we see

− 2AF ij̄ri(ukuk̄j̄ + uk̄ukj̄)− hF ij̄(alij̄Dlu+ 2ali(Dlu)j̄ + al(Dlu)ij̄ + bij̄)

≥ − 1

4
F ij̄(uk̄j̄uki + ukj̄uk̄i)− 32A2|∇u|2F ij̄rirj̄

− 1

4
F ij̄(Dlu)j̄(Dlu)i − C1(h+ h2)

∑
F īi − halDlψ̃.

Note that
∑2n

i=1Dlj̄uDliu =
∑n

p=1 2upj̄up̄i + 2up̄j̄upi. Above all, we then
arrive at

0 ≥ −A2hF ij̄rirj̄(Dζ0ζ0u− v(z0, ζ0))−AhF ij̄rij̄(Dζ0ζ0u− v(z0, ζ0))

+
1

4
F ij̄(ukj̄uk̄i + uk̄j̄uki)− 32A2|∇u|2F ij̄rirj̄ + hψ̃uuζ0ζ0

− C3h− C2 − C1(h+ h2)
∑

F īi.

By Lemma 2.2, we obtain that

0 ≥ Dζ0ζ0u
[
−A2hF ij̄rirj̄ −AhF ij̄rij̄

]
+ hψ̃uuζ0ζ0

+ v(z0, ζ0)[A
2hF ij̄rirj̄ +AhF ij̄rij̄ ] +

1

8

τ

nτ + 1
Cn,k,l

∑
F īi(Dζ0ζ0u)

2

− 32A2|∇u|2F ij̄rirj̄ − C1(h+ h2)
∑

F īi − C3h− C2
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≥ − C4|Dζ0ζ0u|
∑

F īi +
1

8

τ

nτ + 1
Cn,k,l(Dζ0ζ0u)

2
∑

F īi − C5

∑
F īi,

where C4, C5 depends on |u|C1 , inf u, |ϕ|C3 , |r|C2 , ∂Ω and β. It implies that

Dζ0ζ0u(z0) ≤ C

√
nτ + 1

τ
,

and hence the result is proved.
Case 2: z0 ∈ ∂Ω. We further divide this case into two subcases according to
whether the direction ζ0 is tangential or non-tangential to the boundary.

Case 2.1: If ζ0 is non-tangential at z0 ∈ ∂Ω, then we can write

ζ0 = ⟨ζ0, γ⟩γ + ⟨ζ0, ν⟩ν,
where ⟨γ, ν⟩ = 0. Then, we have

Dζ0ζ0u(z0) = ⟨ζ0, γ⟩2Dγγu(z0) + ⟨ζ0, ν⟩2Dννu(z0)

+ 2⟨ζ0, ν⟩[ζ0 − ⟨ζ0, ν⟩ν][Dϕ− βDu−DluDν
l],

which implies that

Φ(z0, ζ0) = ⟨ζ0, γ⟩2Φ(z0, γ) + ⟨ζ0, ν⟩2Φ(z0, ν).
By the definition of Φ(z0, ζ0), we know

Φ(z0, ζ0) = Φ(z0, ν) ≤ C(1 + max
∂Ω

|Dννu|).

Case 2.2: If ζ0 is tangential at z0 ∈ ∂Ω, then by (2.1) we have

0 ≤ DνΦ(z0, ζ0)

= −A(Dζ0ζ0u− alDlu− b) +DνDζ0ζ0u

−Dνa
lDlu− alDνDlu−Dνb+

1

2
DkuDνDku

≤ −ADζ0ζ0u+DνDζ0ζ0u+ C|DνDku|+ C

= Dζ0ζ0(−βu+ ϕ)− (Dζ0ζ0ν
k)Dku− 2(Dζ0ν

k)Dζ0Dku

−ADζ0ζ0u+ C|DνDku|+ C

≤ (−A− β)Dζ0ζ0u− 2(Dζ0ν
k)Dζ0Dku+ C|DνDku|+ C,(4.1)

where C depends on inf ψ, |u|C1 , |b|C1 , |a|C1 , |ϕ|C3 and ∂Ω. By the same argu-
ment in [21,23], we see

max
{
−2(Dζ0ν

k)Dζ0Dku, |DνDku|
}
≤ C (1 + |Dννu|+Dζ0ζ0u) .

Therefore, we have

0 ≤ (−A+ C − β)Dζ0ζ0u+ C(1 + |Dννu|) + C.

Choosing A sufficiently large such that −A+ C − β > 1, then we get

Φ(z0, ζ0) ≤ C(1 + max
∂Ω

|Dννu|),

where C depends on β, inf ψ, |u|C1 , |b|C1 , |a|C1 , |ϕ|C3 ,max|r| and ∂Ω. □
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Now we estimate the double normal derivative on the boundary.

4.2. Estimate of double normal second derivatives on boundary

Theorem 4.2. Let u ∈ C4(Ω) ∩ C3(Ω) be an (η, k)-admissible solution to
equation (1.2). Then, we have

max
∂Ω

|Dννu| ≤ C

(
nτ + 1

τ

)2

,

where C depends on n, k, l,Ω, β, |u|C1 , inf ψ, |ψ|C1 and |ϕ|C3 .

Proof. Denote M = max
∂Ω

|Dννu| and φ(z, u) = −βu + ϕ. We divide our proof

into two cases.
Case 1: sup

∂Ω
|uνν | = −inf

∂Ω
uνν = −uνν(z1) =M .

We construct the following auxiliary function

Φ = ⟨Du,Dr⟩ − φ(z, u) +M− 1
2 (⟨Du,Dr⟩ − φ(z, u))2 +

1

2
Mr,

where r is a smooth function such that r|Ω < 0, r|∂Ω = 0 and ∂r
∂ν |∂Ω = 1.

Define

Ωµ := {z ∈ Ω : d(z, ∂Ω) < µ}.
It is obvious that Φ|∂Ω = 0. Take a small positive constant µ such that
r = −dist(·, ∂Ω) on Ωµ. Note that there exists a constant C depending on
µ, β, |u|C1

, |r|C1 , ∂Ω, |ϕ|C0 such that

Φ < 0 on ∂Ωµ \ ∂Ω, |M− 1
2 (⟨Du,Dr⟩ − φ(z, u))| ≤ 1

8
(4.2)

when M ≥ C1. Without loss of generality we assume that M ≥ C1, otherwise
the proof is completed.

Case 1.1: max
Ωµ

Φ = Φ(z0) with z0 ∈ Ωµ.

Then have

0 = Φi(z0) = [⟨Du,Dr⟩ − φ(z, u)]i(1 + 2M− 1
2 (⟨Du,Dr⟩ − φ(z, u))) +

1

2
Mri

and

0 ≥ F ij̄Φij̄(z0)

= F ij̄ [⟨Du,Dr⟩ − φ(z, u)]ij̄(1 + 2M− 1
2 (⟨Du,Dr⟩ − φ(z, u)))

+ 2M− 1
2F ij̄ [⟨Du,Dr⟩ − φ(z, u)]i[⟨Du,Dr⟩ − φ(z, u)]j̄ + F ij̄ 1

2
Mrij̄

= F ij̄ [⟨Du,Dr⟩ − φ(z, u)]ij̄(1 + 2M− 1
2 (⟨Du,Dr⟩ − φ(z, u)))

+
M

3
2F ij̄rirj̄

2(1 + 2M− 1
2 (⟨Du,Dr⟩ − φ(z, u)))2

+
1

2
MF ij̄rij̄ .(4.3)
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An easy computation shows that

F ij̄ [⟨Du,Dr⟩ − φ(z, u)]ij̄ ≥ −C2(1 +M)

n∑
i=1

F īi,(4.4)

where C2 is a constant depending on |u|C1 , inf ψ, |ψ|C1 , |ϕ|C3 , β and |r|C3 . By
(4.2), we obtain

3

4
≤ 1 + 2M− 1

2 (⟨Du,Dr⟩ − φ(z, u)) ≤ 5

4
.(4.5)

Combining with (4.3), (4.4), (4.5), Lemma 2.3 and the fact that |Dr|2 = 1 on
Ωµ, we obtain

0 ≥ −C(1 +M)

n∑
i=1

F īi +
8

25

τ

nτ + 1
Cn,k,l

n∑
i=1

F īiM
3
2 ,

which implies that

M ≤ C

(
nτ + 1

τ

)2

,

where C depends on |u|C1 , inf ψ, |ψ|C1 , |ϕ|C3 , β, n, k, l and |r|C3 .

Case 1.2: max
Ωµ

Φ = Φ(z0) with z0 ∈ ∂Ωµ.

Combining with (4.2), we know that max
Ω

Φ = Φ(z2) with z2 ∈ ∂Ω. By Hopf

Lemma, we have on ∂Ω

0 ≤ ∂Φ

∂ν
= (rlDνul + ulDνrl −Dνφ)(1 + 2M− 1

2 (⟨Du,Dr⟩ − φ(z, u))) +
1

2
M.

Then from the above inequality we have

0 ≤ −3

4
M − 3

4
inf
∂Ω
φν +

1

2
M,

which implies that

sup
∂Ω

|uνν | ≤ C.

Case 2: sup
∂Ω

|uνν | = sup
∂Ω
uνν = uνν(z3) =M .

Similarly, we can construct an auxiliary function

Φ̄ = ⟨Du,Dr⟩ − φ(z, u)−M− 1
2 (⟨Du,Dr⟩ − φ)2 − 1

2
Mr.

The similar argument works for Φ̄, we also obtain the conclusion. □
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5. Proof of the main theorem

Proof of Theorem 1.2. Now we can give the proof of Theorem 1.2. After estab-
lishing a priori estimates in Theorem 3.1, Theorem 3.3, Theorem 4.1, Theorem
4.2 and Evans-Krylov Theorem, we obtain

|u|C2,α(Ω̄) ≤ C

for some uniform C independent of inf ψ, β, |ϕ|C3 and 0 < α < 1. Applying the
method of continuity, we complete the proof of Theorem 1.2. □
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