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THE NEUMANN PROBLEM FOR A CLASS OF
COMPLEX HESSTIAN QUOTIENT EQUATIONS

YUYING QIAN, QIANG TU, AND CHENYUE XUE

ABSTRACT. In this paper, we study the Neumann problem for the com-
plex Hessian quotient equation % =9y with0<I<k<n
We prove a priori estimate and global C! estimates, in particular, we use
the double normal second derivatives on the boundary to establish the
global C? estimates and prove the existence and the uniqueness for the
Neumann problem of the above complex Hessian quotient equation.

1. Introduction

In this paper, we consider the Neumann problem for following fully nonlinear
second order elliptic partial differential equations

ox(TAUl 4+ O0u)

(L.1) o(TAul + 00u)

=1(z), inQcCC"

where  is a C* domain in C" with the unit outer normal vector v on 9. ¢
is a smooth positive function in Q. Denote by U = 7Aul + 90u with 7 > 0,
AU] = (M1, ..., Ap) are the eigenvalues of U. Then

or(TAul + 0du) = o, (\[U]) = > Niy Ny e Ay -

1<y <ia << <n
Recall that the Garding’s cone is defined as
I'e={AeR":0;(X) >0,V1<j<k}.

To ensure the ellipticity of (1.1), we need A[U] € T'y. Hence we introduce the
following definition.
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Definition 1.1. A real value function u € C?(Q) is called (), k)-admissible if
AU] € Ty, for any z € Q.

If 7 = 0, (1.1) is known as the classic Hessian quotient equation. The
corresponding Dirichlet problem or Neumann problem have been studied ex-
tensively in the past four decades for the real case. For example, Caffarelli-
Nirenberg-Spruck [2] and Ivochkina [19] have solved the Dirichlet problem
of Monge-Ampere equation, Caffarelli-Nirenberg-Spruck [3] have solved the
Dirichlet problem of k-Hessian equation. The Dirichlet problem for the general
Hessian quotient equation was solved by Trudinger in [32]. In 1986, Lions-
Trudinger-Urbas solved the Neumann problem of Monge-Ampere equation in
[22]. The Neumann problem of k-Hessian equations was solved by Ma-Qiu
[23], and Chen-Zhang [6] generalized the result to the Neumann problem of
Hessian quotient equations. Chen-Wei [5] have solved the Neumann problem
of Hessian quotient equations in the complex case. Some other fully nonlinear
equations with Dirichlet boundary and Neumann boundary were also studied
in [4,10,24-26].

In the complex setting, the Hessian quotient equations are related to many
important problems in both Kahler and non-Kéahler geometry. It is well known
that the complex Monge-Ampere equation (7 = 0,k = n,l = 0) was solved by
Yau [33] on closed Kéhler manifolds in the resolution of the Calabi conjecture.
It is worth pointing out that the works of Yau connect the geometry and partial
differential equations. Then Tosatti-Weinkove [30,31] have solved the analogous
problem for the equation on closed Hermitian manifolds. The corresponding
Dirichlet problem on strongly pseudo-convex domains was solved by Caffarelli-
Kohn-Nirenberg-Spruck [1] in their milestone work. Then Cherrier-Hanani [7]
and Guan-Li [14-16] extended [1]’s results to complex manifolds. After Yau
and Caffarelli-Kohn-Nirenberg-Spruck’s works, the fully nonlinear equations in
complex domain or manifolds attracted many mathematicians in partial differ-
ential equations. For complex Hessian equation (7 = 0,/ = 0), Hou-Ma-Wu [18§]
established the second order estimates for the equation without boundary on
Kéhler manifold, and then Dinew-Kolodziej [9] solved the equation by combin-
ing the Liouville theorem and Hou-Ma-Wu’s results. Zhang [34] and Székelyhidi
[29] have solved the equation without boundary on Hermitian manifolds. Gu-
Nguyen [13] were able to obtain continuous solutions to the complex Hessian
equation with boundary on Hermitian manifolds, and Collins-Picard [8] solved
the same problem under the existence of a subsolution. For Hessian quotient
equation, the (n,n — 1)-Hessian quotient equation have appeared in a prob-
lem proposed by Donaldson in the setting of moment maps and was solved by
Song-Weinkove [27]. Then (n,l)-Hessian quotient equation was considered by
Fang-Lai-Ma [11] on Kéhler manifolds, and by Guan-Li [15], Guan-Sun [17] on
Hermitian manifolds. The general (k,[)-Hessian quotient equation with k& < n
without boundary on Hermitian manifolds was studied by Székelyhidi [29] and
by Sun [28]. The corresponding Dirichlet problem on Hermitian manifolds was
studied by Feng-Ge-Zheng [12].
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Recently, Jiao-Wang [20] consider the Dirichlet problem for a class of fully
nonlinear elliptic equation in Euclidean space,

f(rAu+ D*u) =4 in Q,

which is arising form conformal geometry. The development of the Neumann
boundary problem for fully nonlinear equation is one of the motivations for
us to study the corresponding Hessian quotient equation. In this article we
want to know about the Neumann problem of the following complex Hessian
quotient equations

or(TAul + 00u) )
= = Q
(1.2) o(TAul + 00u) v(=), in g,
uy, = —pu+ ¢(z), on 0N,

where 0 <[ < k < n, (8 is a positive constant, v is the unit outer normal vector
on 0f2. The main theorem is as follows.

Theorem 1.2. Let Q C C" be a domain with C* boundary, 7 > 0, ¢ € C3(9Q)
and 0 < v € C?(Q). Then there exists a unique (n,k)-admissible solution
u € C3(Q) (0 < a < 1) for the Neumann problem (1.2).

Remark 1.3. The key proof for Theorem 1.2 is to establish the a priori estimates
for equation (1.2), and then the existence result easily follows by the continuity
method. The presence of 7 > 0 is crucial to the global estimates for second
derivatives. For 7 = 0, Chen-Zhang [6] obtain the global C? estimates for
equation(1.2) by some important inequalities of real Hessian quotient operator.

Following the same methods for real equation, we can obtain the existence
results for the real counterpart of equation (1.2).

Theorem 1.4. Let Q C R" be a domain with C* boundary, ¢ € C3(0S) and
0 <t € C?(Q). Then there exists a unique k-admissible solution u € C*(Q)
for 0 < a <1 to the Neumann problem

or(TAul + D?u)
(1.3) oi(tAul + D?u)
u, = —fu+ ¢(x), on 99,

=9(x), in,

forany 1 <1<k <n and B is a positive constant, where v is the unit outer
normal vector on OS).

The rest of this paper is organized as follows. In Section 2 we recall some
properties of the elementary symmetric function o, and prove key lemma. In
Section 3 we prove the C° estimates and gradient estimates. In Section 4 the
second order estimates are derived. In Section 5, we prove the existence of a
solution.
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2. Preliminaries

Let A = (A1,...,A) € R™, we recall the definition of elementary symmetric
functions for 1 < k < n,
or(\) = > Aiy Aiy - Aiy -

1<) <ig < <ip<n
The Garding cone is defined by I'y = {A € R" : 0;(\) > 0,V 1 <4 < k}. We

denote o1 (\|i) = g/\ and o _o(\|if) = ai g’;\ Next, we list some properties

of o3, which will be used later.

Lemma 2.1. Let A= (\1,...,\,) ER® with A €Ty and 1 <k <n. Then we
have

(1) og—1(Ald) >0 for 1 <14 <n;
) ok (A) = ak()\| ) + Aiok—1(Al7) for 1 <i<mn;
YIfFAM > X > o> Ay, then op—1(M1) < op—1(N\2) < -+ < op—1(A|n);
) S ok 1<A|> (" k+ Do (V)
YIf A > Xy > > \,, then we have

or1(Ak) > C Y ou_1(A]),

(2
(3
(4
(5

where Cy, 1, is a positive constant only depending on n and k;
(6) If M1 > X > -+ - > A, we have g1 (Ak) > Cp gor—1(N);
(M Ifn>k>1>0,n>r>s>0,k>r, andl > s, we have

oeN)/Cr | ™ _ [N/
a1(A)/Cl, ~ | esW/C

1
T—s

(8) If A = (A1,..., \n) € Tk, then ['Z_’;((i‘))] (0 <1<k <mn) are concave
with respect to A\. Hence, for any (£1,...,&,), we have

5]
a [O’k()\)] ZZ l é-z
S e < (1- )
oNiON; T k—1 Tk (A)
%] ‘71(>‘)
Let 2 = (21,...,2,) be a point in C". Given { € R?", D¢u denote the
directional derivative of u along &. For the complex variables, we use the
following notations:

5 ou ou 9 0%u 9 Pu
U= — = — U = — - =
k Oz, F Oz ¥ 02025 T ik 02;02;0zy,
For simplicity, we write u; = O;u, Uz =0, FUs Uz = 8i3ku, and so on. It holds
that
L o 1
(2.1) Vul? =" 0udju = Z|Du|2.

Jj=1
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Then in complex coordinates, we denote by 7,7 = TAud;j+u,;. Let A = Au,5)=
(A15- -+, A) be the eigenvalues of {u,;} and n = A(n(u;3))=(m,...,m.) be the
eigenvalues of {n;7}. Then we can get n; = TZ;:lAj + A;. With our notations,
equation (1.1) can be written as

1
o\ F! 7 1
22 S0 = Flug) =60 = (%) 1) = de) = v
For convenience, we also can introduce the following notations:
2 - 2
Fﬁ _ OF , Fz] Kl O°F G’L; _ oG , Gi;,kl _ oG )
Ouz T Ous0u 50u;77 on;z On;0m,

Let u be an admissible solution of equation (1.1), {u;;} is diagonal at a single
point, equation (1.1) is expressed in the form

i3 . of
F J = fidij Wlth fz' = (9)\1
In the following, we assume Ay > --- > \,, then we can get n; > --- > n,,

which implies o;(n|1) < -+ < ogy(n|n) for 1 <1 < k — 1. Therefore, at a point
z € Q where {u;7(2)} is diagonal, we have

i oF 0G 677Tg " Lk -~
Film 2= = : =7y GMF 4 G
8uig 8777“5 3uﬁ T; +

Lemma 2.2. If A = (A1,...,\,) € T'g, then [‘;’;((Z))]ﬁ (0 <1< k<n)are

concave with respect to A.

Proof. Tt is equal to prove that for any (&1, ...,&,), we have

il |
a [G'k((g)} 1 Zl l gz
o] _
ONiON; oy, = k—l) akT(nn)) '
oy
By Lemma 2.1, we can obtain
[Uk(ﬁ)}gg - Z %(77)] O anb§§
OXiOA;j J_”ab Gnaanb o\ 0N
o) ?
L= )]
S(l_k_l) ok (n)
o1(n)
o on,
U >ai " one 8 &
<( _k—l) o (n)

ai(n)
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8[‘(:19(:1)] 2
1 |:ZZ al)\(i]) fZ:|
k— l)

<(1- .
— o (n)
au(n) O

Lemma 2.3. Let 0 <1 < k <n, r be an n x n Hermitian matriz, X\ = \(r) be
the eigenvalues of r with n =1 2?21 Aj-1+Xxely. Then

n
r
> C ;
fi> 1 n,k,l;fu
where 0 < f1 < -+ < f,, are the eigenvalues of {Fﬁ(r)}, Ch i, 15 a constant
depending on n, k and [.

Proof. When | = 0, the results follows by the same method as in [10, Lemma 9].
Hence we only need to prove the lemma for [ > 1. Without loss of generality,
we assume that the matrix r is diagonal with Aj(r) > --- > A\, (r). Hence,
M (r) > --- > n,(r). Direct calculations shows that

R
ATV () oy

fi= onp o\
1 (T e o1 N o ()01 — 1 (nlp) (751
= ph(g ) Y e T
p
L e (DAl = )+ 7 s a1 =)
k=14 g, a(n) ’

where o, is defined by

or(nlp)oi—1(nlp)
Q= ———————= VYp=1,...,n.
P e mp)enlp) T

Note that

n n
(2.3)  ok1(lp) = Cok > ox1(nli), ou(nlp) > Cny Y oul(nli), Vp>k.
i=1 i=1
We can divide into two cases:
Case 1: oi(n|p) > 0. We have n|p € Ty, since n € Ty, n|p is the n-dimen-
sional vector with zero on the pth slot.
By Newton-MacLaurin inequality for 1 < p <n

CNCE L U —k)

< —
o T kD)

that is to say
ln—k) nk-=1
l—a,>1- = .
WEL T k=) kn—1)
Case 2: oi(n|p) < 0. Then we have o, <0, and
n(k —1)
k(n—1)

l—a,>12>
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Now we can estimate by (2.3)

flz,%”—k

p>k
n(k—1) T(n—k+1) o
2t et CnkCni(35)

10k 1 (1)
=700 ka(5) ™ ¢

ai(n)
n
> Cn,k,l# Z fi7

i=1

where the last equality is using the following equation

(T +1) sy ok (mli)oi(n) -

7—1 Z TOk— 1(n|p)m(n\P)(1 ap)

=1l ok—1(maoi(n)
ot (n)

iz1 o1—1(nli)ok(n)

n

1
D fi= (g
i=1

o7 (n)

a7 (n)

7_22;1 > pri k-1 (nlp)or (M) =37 3, 0'1—1(77|p)‘7k(71)}

-1 iy ok (nfd )Uz(n) ok (mai—1(nl7)

of

n

1 .

k—1 (%)kil 10—% Zak—l(n‘l)
i=1

_ (nt+)(n—k+1) o\~ —10k_1(n)
o )T e

IN
3
3
it

Remark 2.4. By Newton-Maclaurin inequality, if £ > [ > 0, we see that

Z fi<)\) nr+1 (nk )ﬁ—l >oiey ok—1(MH)or—okoi—1(A]i)

2
1 a;

o "12

nt41 (ak )ﬁ—l (n—k+1)ok_10,—(n—1l4+1)o;_10}%

(nT+1) nkarl)(a )ﬁ Ok—1 (n‘r+1)(n71+1)(07k)ﬁ01—1
k—1 o ok k—1 o
1

ICLor_4

gl

1
o kC:fa _1
=+ DG Ger T, ~

_ nrjl(%)kl [kak 1C

_ lal,lc'i,,]
Ukcn

-1
o1Cp

k—1
> (nr + 1)(?)*72;@

O'k l/ck 1[Ck kl_L
ak/C" Cl

(TLT + I)ka,l

= (n7 + 1) 245

(2.4) > (n7 +1)(8F) 7T =

for A € R™ with n € T'y.

Proposition 2.5. If A € R™ with n € Ty, the operator
with respect to .

(k=D)CH oy

]

7k (n) is strictly elliptic
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3. C? estimates

In this section, we prove the C! estimates for the equation (1.2). We always
assume that the conditions in Theorem 1.2 hold.

3.1. C° estimates

Theorem 3.1. Suppose u € C*(2) N CY(Q) is an (n, k)-admissible solution to
(1.2). Then we have
2
nr + C
nt+1

lulgo <
where C' depends on n, k, 1, ), B, max|@|, max|i|.

Proof. On the one hand, suppose that w attains its maximum at zy € 9.
Hence,

0 < Dyu(z0) = —Pu(z0) + ¢(20)-
Then we have

maxu = u(zp) < lqzb(zo) < lngi2x|gz$(z)\.

B B o
On the other hand, define a constant
1 [Cl -
[
Note that
or(TAul + 00u
a —e

(T Aul + Jdu)
e g OTABE + 00(BIz)
] o1(TA(B|2[*)I + 00(B|z|?))

Without loss of generality, we suppose 0 € 2, hence we know that the function
u — B|z|? attains its minimum at a point z; € 9Q. It is immediate to see that

0> D,(u— Bl|z[*)|.zzy > —Pu(z1) — r%%x|¢| — 2Bdiam(9).
Therefore,

minu > min(u — B|z|?)
a9 o0

1 2B . . 2
> - — - —
> Brrg%x|¢| 3 diam(2) — Bdiam~(2)
> _nt + 20

nt+1 " 0



A CLASS OF COMPLEX HESSIAN QUOTIENT EQUATIONS 1007

3.2. Global gradient estimates

Theorem 3.2. Suppose u € C3(Q) is an (n, k)-admissible solution to (1.2).
Assume 0 € Q and B,(0) C Q. Then, we have

C 1
Vul(0) < Sy /T
'S T

where C' depends on n,k,1,Q, |u|co, inf ) and ||cr.
Proof. Consider the following test function on B, (0) C €,
H(z) =In|Vu| + h(u) + In((2),

where ((z) =% — |z]* and [Vu| = />"}_; upuz. Define

(3.1) h(s) = 6(s + L),

here we set L := |u|go + 1, ¢ is a sufficiently small constant such that
R —4(h)? =26 — 166 (u + L)? > 6.

Assume H attains its maximum at zg € B,-(0). At 2o, we have

|vu|2 ’ Ci
3.2 0=H;, = L4 pu 4 2
(3.2) e +h'u +C
and
0> F7H;
S Vut Va2 Vu2 - = —Co s
= F ot — 7 gt P+ Fluguy+ P50 - PTG
= |Vu|% — |Vu|?|Vul2 = = i iy
(33) = Fﬁﬂglvjj‘g _ i 2||§|u|4 i +h FPusA-h" Fouius— ECF £ -

Assume that |Vu(zo)|> > 1. By Cauchy-Schwartz inequality and (3.2), we
obtain

| Vul?|Vu|?
] J

ij 4 7
Direct calculation shows
(3.5) FgWul% = F(upugz + ugig;) + unty + upn.

Combining with (3.3), (3.4), (3.5), Lemma 2.3 and Remark 2.4, we have

ij 1 ¢ ii 5r? & i
=1 =1

T DL e 62~
>-C 6Ch k| Vu?y Fi— — N " FU,
- + nt+1 ’k’l| ul ; ¢? ;



1008 Y. QIAN, Q. TU, AND C. XUE

Assume |Vu(zo)|?2 > max{ c 1}. We arrive at
‘ ( 0)| - #H%C’Il,k,l(n7+1)c7b,k,l7

T (;Cn,k,l 2 67‘2 - it
O><n7’—|—1 2 [Vl 2 ;F’

which implies
1272

—_
n‘r+150nvk’l

¢*(20)|Vul*(20) <

Therefore, by H(0) < H(zp) and an easy calculation, we obtain

1 12 1
Vul(0) < - L

0Cnry T O

Now we prove the global gradient estimates by the following proposition.

Theorem 3.3. Suppose u is a C* (n, k)-admissible solution to (1.2). Then we

have
/ 1
Sup|vu| < HO)
Q T

where C depends on n, k1, 8,Q, |u|co,|d|cs, inf ¥ and ||
Proof. Consider the following auxiliary function
T(z) = In|Vw| + Ad + h(u),

where w = u + (—Bu + ¢(2))d, d(z) = dist(z,0Q), h is a smooth function
defined by (3.1), A is a positive constant to be determined later. Suppose that
G attains its maximum at zg € €2, we divide the proof into three cases.

Case 1: zy € Q, := {z|d(2,09Q) > pu}. We can bound |Vu|(z9) by Theorem
3.2.
Case 2: zp € 90. We denote by ¢ = —fu + p(z). Notice that
w, = Uy, + @pd+ @d, = 0; u, =@  on .
Hence, at zg,
_ Vel
- 2|Vuw|?
1 2n—1
50> i1 DrwDrpyw + DywD,,w) 4 ,
= du h v
2V + + h'u
< sup{|Tl[} — A+ b (u)@(z0, ),

+ Ad, + h'u,

0
< 2
OfayT

where II;; is the second fundamental form of 9. We choose
A = sup{[IL;;|} + sup|h/[[5] + 1,
o0 Q

which yields a contradiction to g—f <0.
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Case 3: zp € Q\ 1. Hence at z, we have

[Vw|? /
3.6 0=Ti(z) = i1 Ad; + by,
(3.6) (20) Vw2 + + h'u
and
0> FiT
ij \Vw|% f\Vw|?|Vw\?. ij ij i
= F]2|Vw\2 72Fj 4|Vw\4 +AF]dl;+h/F]u13+hHFj’UJzU;

i IVl i i i i

(37) Z F J 2[Vw|? *4A2F szd;+ (h” - 4(h/)2)F j’U,ZU;+AF Jdﬁﬁ*h’F Juﬁ,

where in the last inequality we used (3.6) and Cauchy-Schwarz inequality.
It is immediate to see that

(3.8) Fi;|Vw|% = kaﬁwfﬂ-j + Fﬁwkﬁwg + Fi;(wkich; + wkwai)'
Recall that ¢(z,u) = —fu + ¢(z). We have
Flwpz = Flugz + FY(pd)g;
= FY9(=Bugds — Bugjd; — Buzdy — Bugd; — Buidy;
— Buzdy; — Budg;z) + F(¢(x)d)g; + (1~ Bd).
By Cauchy-Schwarz inequality we get
Flhwggwg + we F9wg; > (g + dwy) (1 — Bd) — eF7 (upiugg + upguz)
(3.9) — CY)F(|Vul? + [Vl + 1),
i=1
and
F9 (wyiwgs + wigwg) > (1= Bd)°F (upiug; + ugug;) (1 - )
(3.10) — O F(|Vul + [Vul + 1).
i=1
Combining with (3.8), (3.9) and (3.10), we obtain
(3.11) FI|Vw|% > —C|Vul> = C Y F*(|Vul> + |[Vu| + 1),
i=1
if we choose p chosen sufficiently small. Substituting (3.11) into (3.7), we have
0> —C—CY F' —4A*Fdd;
i=1
(3.12) + (W = 4(h')?) Fugus; + AF9ds + h' Fiug;.
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Note that b’ > 26, h" — 4(h')? > § and
CY FIvuP, N FT > (7 +1)C,

T

Fijuilg >
nrt+1

(3.12) yields that

-
nt +1

SCY FUVu <C+C(1+ A% FT
i=1 i
then, we have

C.

T+1
|Vul?> < n
T

Combining with Case 1, Case 2 and Case 3, the global gradient estimates is
completed. O

4. Global estimates for second derivatives

In this section, we prove the a priori estimates of global second-order deriva-
tives.

4.1. Reduce global second derivatives to double normal second
derivatives on the boundary

Theorem 4.1. Suppose u is a C* (1, k)-admissible solution to (1.2). Then we

have
1
sup  Deculz) < Cy /2 (1 + sup| Dy,
(2,)€Qx S2n—1 T a0

where C' depends on n,k,l, 8,Q, |u|c1,inf ¥, |¢|c2 and |d|cs.

Proof. We consider the function
O(z,¢) = h(r)(Decu — v(z,¢)) + | Vul?,

where v(z, () =a' Dyu+b, a' =—2(¢, v)(¢, Dv')-2B(C,v)(¢")', b=2(C,v)((', Do)
and ¢’ = ¢ — (¢, v)v. The function h is defined by

h=e 4.
Here 7 € C%(Q) with r|gpg =0 and D,r =1 0n 9Q, A=1+ 2%%X{|Hij|} + 18]

and II;; is the second fundamental form of the boundary.
Denote
max  ®(z,¢) = (20, Co)-
(2,0)eQx 52n—1

Then for ¢y € S?"~1, max®(z,(p) is attained at zy € Q.
z€€)
Case 1: z5 € Q.

Differentiating ® at zg, we obtain

0=; = h'r;(D¢ycot — v(20,C0)) + h(r)(Deocott — v(20,C0))i + untig; + ugtini,
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and
0> Fig,;
- h’Fﬁri;(Dc(,gUu —v(20,¢0))
+ Fijh"n-r; (Deocor — v(20,Co)) + h’riFﬁ(Dgogou —v(20,0))3
+ FOR'r5(Dgygo = v(20, 0))i + hFY (Dgogeu = v(20,0))ij
+ (Upjug; + Upjuki + UkUE;G + Upug;)
— oW/ Fy, <_ h'r3(De¢ocou — v(20,C0)) + urug; + ukukj)
h
+ (h'Fﬁrij + Fijh”rir3)(D¢040u —v(20,¢0)) + Fﬁ(ukju,;i + Ui uRi)
+ F (upug; + ;) + hE9 (Deygou — v(z0, o))
Note that

” ij,kl, , g, i, — g,
Veoco = G MigeoMiico + GV Mijcoco < GV Mijeoce = F¥ Uijicocos
which implies that
0> — A2hFi5rir5(D<0<0u — (20, (o)) — 2AFi3ri(uku,;3 + ugug;z)
— ARF975(Deocou — v(20,€0)) + F7 (ugug; + ugjus) + uetp + updn
+ hQZCoCo - hFij(a%Dlu + Qaé(Dlu)E + al(Dlu)ﬁ + bij).
By Cauchy-Schwarz inequality, we see
— 2AFijT7; (uku,gj + u,;uki) — hF” (aﬁleu + 20/2 (Dlu)j + a’l(Dlu)ij + bl})
1 = =
> — ZF” (u,;;uki + uk;u,;i) — 32A2|VU|QF”T1‘T3
1 = — ~
— ;P (Du);(Dyw)i — Ci(h + h?)> F% — ha' Dy,

Note that 212:1 DjzuDyu = ZZ=1 2u,7Uup;i + 2ugiup;. Above all, we then
arrive at

0> — Athﬁrirg(Dcogou —v(20,¢p)) — AhFﬁrﬁ(DCOCOu —v(20,¢p))
+ iFﬁ(ukju,;i + ugjuri) — 32A2|Vu|2Fi3riT3 + }“Zu“CoCo
— C3h — Cy — Cy(h + h?) ZFﬁ
By Lemma 2.2, we obtain that
0> D¢ycott [—A2hFi37“ir3 - AhFﬁrﬁ} + hJuUCOCo
+ (20, Co) [A2hF T ryrs + ARFIr;s] + é#cn,k,z > F(Deyeou)?

— 3242 Vul?Fiirir; — Ci(h+h%)Y F' — C3h — Cy
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it 1 T I%3 i1
> — Cy|Deyeoul » F +§F+1 ikt (Deoeou)® Y F' = C5 Y F,

where Cy4, C5 depends on |u|cr, inf u, |¢|cs, |7|c2, 02 and S. Tt implies that

nt+1
DCOCOU('ZO) <C )

T

and hence the result is proved.

Case 2: 2y € 09). We further divide this case into two subcases according to

whether the direction (y is tangential or non-tangential to the boundary.
Case 2.1: If {j is non-tangential at zg € 02, then we can write

Co = (Cos 7)Y + (Co, V)1,
where (vy,v) = 0. Then, we have
Deyyul20) = {Cos7)* Dynu(20) + (Co, v)* Dypu(20)
+2(¢0, 1) (G0 = (G0, »)V][D¢ — BDu — DyuDv'],
which implies that
®(20, o) = (€0, 7)*®(20,7) + (Co, ) *®(20, v).
By the definition of ®(zg, (o), we know
D(z0,¢0) = P(20,v) <C(1+ r%%X|DWu|).
Case 2.2: If (j is tangential at zg € 91, then by (2.1) we have
0 < D, ®(z0, (o)
= — A(D¢ycqu — a'Dyu — b) + Dy, Dey eyt
— Dya'Dyu —a'D, Dyu — Db+ %DkuD,,Dku
< — AD¢y¢ou+ Dy Deyeou+ C|DyDyu| + C
= Doco(—=Bu + ¢) — (Do) Dt = 2(Deo ™) D, Dy
— AD¢yepu+ C|D, Dyul + C
(4.1) < (=A = B)D¢ycott — 2(Deyv®) Dy Dyu + C| D, Dyul| + C,

where C' depends on inf 9, |u|c1, |b|c1, |alct, [@|cs and 9. By the same argu-
ment in [21,23], we see

max {—2(Dgouk)DCODku, |DyDrul} < C (14 |Dyyu| + Deyeou) -
Therefore, we have
0<(—A+C —B)D¢ycou+ C(1+|Dyyul) + C.
Choosing A sufficiently large such that —A + C — 8 > 1, then we get
B(20, o) < C1 + max | Dy,

where C depends on 3, inf ¢, |u|c1, [b|c1, |a|ct, |@|os, max|r| and 9. O
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Now we estimate the double normal derivative on the boundary.

4.2. Estimate of double normal second derivatives on boundary

Theorem 4.2. Let u € C*(Q) N C3(Q) be an (n, k)-admissible solution to
equation (1.2). Then, we have

T

2
1
max|D,,u| < C (m’—i— ) ,
o9

where C depends on n, k,1,Q, B, |u|c1,inf 9, |¢|cr and |d|cs.

Proof. Denote M = r%%x|DWu\ and ¢(z,u) = —Pu + ¢. We divide our proof
into two cases.
Case 1: sup|u,,| = —infu,, = —u,,(21) = M.
80 oN
We construct the following auxiliary function
1
® = (Du, Dr) = p(z,u) + M~ ((Du, Dr) — p(z,w))? + 5 Mr,

where r is a smooth function such that rlo < 0, rlago = 0 and 2-|sq = 1.
Define

Q, ={z€Q:d(z,00) < pu}.
It is obvious that ®|pg = 0. Take a small positive constant p such that
r = —dist(-,00) on Q,. Note that there exists a constant C' depending on
w, B, |uley s |r|or, 0, |¢|co such that

(4.2) ®<0 ond,\dN, |M z((Du,Dr)—p(z,u)| < é

when M > (7. Without loss of generality we assume that M > C;, otherwise
the proof is completed.

Case 1.1: max® = ®(z) with zp € Q.
QH
Then have

0 = ®;(20) = [(Du, Dr) — (2, u)}i(1 + 2M 2 ({Du, Dr) — ¢(z,u))) + %Mn
and
0> Fd(z)
= F9[(Du, Dr) — ¢(z,u)]5(1 + 2M =2 ({Du, Dr) — ¢(2,u)))
+2M 2 FI[(Du, Dr) — (2, w)lil(Du, Dr) — (2, u)]; + F7 5 Mrg
= F9[(Du, Dr) — ¢(z,u)]5(1 + 2M =2 ({Du, Dr) — ¢(z,u)))

M3 Fiirr; 1 -
T + 7MF,L‘77‘1'5.
2(1 4+ 2M =z ((Du, Dr) — ¢(z,u)))2 2

(43)  +
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An easy computation shows that

(4.4) F[(Du, Dr) — e(z,u)];; = —Ca(1 + M) ZFﬁ’

i=1

where C5 is a constant depending on |u|c1,inf ¢, |¥|c1, |d|cs, f and |r|cs. By
(4.2), we obtain

(4.5) <14 2M~2((Du, Dr) — ¢(z,u)) <

B o
NSy

Combining with (4.3), (4.4), (4.5), Lemma 2.3 and the fact that |[Dr|?> =1 on
1, we obtain

- i 8 T " i 3
0>-C(1+M 4+ —-——0, FYMz,
- (1+ ); +25n7'+1 kl;
which implies that
2
M<C (m‘ + 1) 7
T

where C' depends on |u|cr, inf 4, |¥|c1, |dles, 8,1, k, 1 and |r|cs.
Case 1.2: max® = ®(z) with zg € 09,.
Q

”w
Combining with (4.2), we know that max® = ®(zy) with 2o € 0Q2. By Hopf

Q
Lemma, we have on 92
0d _1 1
0< 5 = (riDyu; +wDyry — Dy)(1 4+ 2M ™2 ((Du, Dr) — p(z,u))) + §M
v

Then from the above inequality we have

3 3 1
0< "M - Zinfe, + ~M,
=7y 1oy Ty

which implies that

suplu,,| < C.
o0

Case 2: suplu,,| = supu,, = u,,(23) = M.
29 o9

Similarly, we can construct an auxiliary function
— 1 1
¢ = <DU7DT> —p(z,u) — M_§(<DU7D7"> - 80)2 - §M’r~

The similar argument works for ®, we also obtain the conclusion. (I
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5. Proof of the main theorem

Proof of Theorem 1.2. Now we can give the proof of Theorem 1.2. After estab-
lishing a priori estimates in Theorem 3.1, Theorem 3.3, Theorem 4.1, Theorem
4.2 and Evans-Krylov Theorem, we obtain

[ulc2.a@y < C

for some uniform C independent of inf ¢, 3, |¢|cs and 0 < a < 1. Applying the

method of continuity, we complete the proof of Theorem 1.2. O
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