DOI QR코드

DOI QR Code

THE CHERN SECTIONAL CURVATURE OF A HERMITIAN MANIFOLD

  • Pandeng Cao (School of Mathematical Sciences Xiamen university) ;
  • Hongjun Li (School of Mathematics and Statistics Henan University)
  • Received : 2023.02.07
  • Accepted : 2024.02.29
  • Published : 2024.07.31

Abstract

On a Hermitian manifold, the Chern connection can induce a metric connection on the background Riemannian manifold. We call the sectional curvature of the metric connection induced by the Chern connection the Chern sectional curvature of this Hermitian manifold. First, we derive expression of the Chern sectional curvature in local complex coordinates. As an application, we find that a Hermitian metric is Kähler if the Riemann sectional curvature and the Chern sectional curvature coincide. As subsequent results, Ricci curvature and scalar curvature of the metric connection induced by the Chern connection are obtained.

Keywords

Acknowledgement

The authors are very grateful to the referee for providing many helpful suggestions that substantially improved the manuscript. The authors gratefully acknowledge the financial supports by the National Science Foundation of China under Grant No. 12001165.

References

  1. P. Gauduchon, La 1-forme de torsion d'une variete hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495-518. https://doi.org/10.1007/BF01455968 
  2. P. Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 257-288. 
  3. J. He, K. Liu, and X. Yang, Levi-Civita Ricci-flat metrics on compact complex manifolds, J. Geom. Anal. 30 (2020), no. 1, 646-666. https://doi.org/10.1007/s12220- 019-00156-9 
  4. D. Huybrechts, Complex Geometry, Universitext, Springer, Berlin, 2005. 
  5. H.-C. Lee, A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. J. Math. 65 (1943), 433-438. https://doi.org/10.2307/2371967 
  6. H. Li and C. Qiu, A note on holomorphic sectional curvature of a Hermitian manifold, Glasg. Math. J. 64 (2022), no. 3, 739-745. https://doi.org/10.1017/S0017089522000064 
  7. H. Li, C. Qiu, and G. Zhong, Curvatures of strongly convex Kahler-Finsler manifolds, Differential Geom. Appl. 86 (2023), Paper No. 101957, 25 pp. https://doi.org/10.1016/j.difgeo.2022.101957 
  8. Q. K. Lu, A note on the extremum of sectional curvature of a Kahler manifold, Sci. Sinica Ser. A 27 (1984), no. 4, 367-371. 
  9. Q. K. Lu and Y. C. Xu, A note on transitive domains, Chinese Math. 2 (1961), 11-26; translated from Acta Math. Sinica 11, 11-23. 
  10. A. Moroianu, Lectures on Kahler Geometry, London Mathematical Society Student Texts, 69, Cambridge Univ. Press, Cambridge, 2007. https://doi.org/10.1017/CBO9780511618666 
  11. Y.-T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kahler manifolds, Ann. of Math. (2) 112 (1980), no. 1, 73-111. https://doi.org/10.2307/1971321 
  12. W. J. Westlake, Conformally Kahler manifolds, Proc. Cambridge Philos. Soc. 50 (1954), 16-19. https://doi.org/10.1017/S0305004100029029 
  13. B. Yang and F. Zheng, On curvature tensors of Hermitian manifolds, Comm. Anal. Geom. 26 (2018), no. 5, 1195-1222. https://doi.org/10.4310/CAG.2018.v26.n5.a7 
  14. F. Zheng, Complex Differential Geometry, AMS/IP Studies in Advanced Mathematics, 18, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/amsip/018