DOI QR코드

DOI QR Code

SCHATTEN CLASSES OF COMPOSITION OPERATORS ON DIRICHLET TYPE SPACES WITH SUPERHARMONIC WEIGHTS

  • Zuoling Liu (Department of Mathematics Shantou University)
  • Received : 2022.01.25
  • Accepted : 2024.04.26
  • Published : 2024.07.31

Abstract

In this paper, we completely characterize the Schatten classes of composition operators on the Dirichlet type spaces with superharmonic weights. Our investigation is basced on building a bridge between the Schatten classes of composition operators on the weighted Dirichlet type spaces and Toeplitz operators on weighted Bergman spaces.

Keywords

Acknowledgement

The author would like to thank his advisor, professor Hasi Wulan, for his kindness and constant encouragement. The author is very grateful for the meticulous review and valuable suggestions from the anonymous reviewers!

References

  1. A. Aleman, Multiplication Operator on Hilbert Spaces of Analytic Functions, Habilitation, FernUniversitat Hagen, 1993. 
  2. H. Arroussi, I. Park, and J. Pau, Schatten class Toeplitz operators acting on large weighted Bergman spaces, Studia Math. 229 (2015), no. 3, 203-221. https://doi.org/10.4064/sm8345-12-2015 
  3. G. Bao, Mobius invariant Dirichlet type spaces, J. Math. Anal. Appl. 466 (2018), no. 2, 1359-1372. https://doi.org/10.1016/j.jmaa.2018.06.059 
  4. G. Bao, N. G. Gogus, and S. Pouliasis, Qp spaces and Dirichlet type spaces, Canad. Math. Bull. 60 (2017), no. 4, 690-704. https://doi.org/10.4153/CMB-2017-006-1 
  5. G. Bao, N. G. Gogus, and S. Pouliasis, On Dirichlet spaces with a class of superharmonic weights, Canad. J. Math. 70 (2018), no. 4, 721-741. https://doi.org/10.4153/CJM-2017-005-1 
  6. G. Bao, J. Mashreghi, S. Pouliasis, and H. Wulan, Mobius invariant function spaces and Dirichlet spaces with superharmonic weights, J. Aust. Math. Soc. 106 (2019), no. 1, 1-18. https://doi.org/10.1017/S1446788718000022 
  7. G. Bao, H. Wulan, and F. Ye, The range of the Cesaro operator acting on H, Canad. Math. Bull. 63 (2020), no. 3, 633-642. https://doi.org/10.4153/s0008439519000717 
  8. B. Berndtsson, Weighted estimates for the ∂-equation, Complex Analysis and Geometry (Columbus, OH, 1999), 43-57, Ohio State Univ. Math. Res. Inst. Publ., 9, De Gruyter, Berlin, 2001. 
  9. O. Constantin, Carleson embeddings and some classes of operators on weighted Bergman spaces, J. Math. Anal. Appl. 365 (2010), no. 2, 668-682. https://doi.org/10.1016/j.jmaa.2009.11.035 
  10. O. El-Fallah, K. Kellay, H. Klaja, J. Mashreghi, and T. Ransford, Dirichlet spaces with superharmonic weights and de Branges-Rovnyak spaces, Complex Anal. Oper. Theory 10 (2016), no. 1, 97-107. https://doi.org/10.1007/s11785-015-0474-7 
  11. O. El-Fallah, H. Mahzouli, I. Marrhich, and H. Naqos, Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces, J. Funct. Anal. 270 (2016), no. 12, 4614-4630. https://doi.org/10.1016/j.jfa.2016.01.005 
  12. O. El-Fallah, H. Mahzouli, I. Marrhich, and H. Naqos, Toeplitz operators on harmonically weighted Bergman spaces and applications to composition operators on Dirichlet spaces, J. Math. Anal. Appl. 466 (2018), no. 1, 471-489. https://doi.org/10.1016/j.jmaa.2018.06.007 
  13. L. V. Hormander, An Introduction to Complex Analysis in Several Variables, third edition, North-Holland Mathematical Library, 7, North-Holland, Amsterdam, 1990. 
  14. P. Lin and R. Rochberg, Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pacific J. Math. 173 (1996), no. 1, 127-146. http://projecteuclid.org/euclid.pjm/1102365846  102365846
  15. D. H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), no. 2, 345-368. https://doi.org/10.1016/0022-1236(87)90072-3 
  16. D. H. Luecking and K. Zhu, Composition operators belonging to the Schatten ideals, Amer. J. Math. 114 (1992), no. 5, 1127-1145. https://doi.org/10.2307/2374892 
  17. C. A. McCarthy, Cp, Israel J. Math. 5 (1967), 249-271. https://doi.org/10.1007/BF02771613 
  18. J. M. Ortega and J. F'abrega, Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111-137. https://doi.org/10.5802/aif.1509 
  19. J. Pau and P. A. Perez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl. 401 (2013), no. 2, 682-694. https://doi.org/10.1016/j.jmaa.2012.12.052 
  20. J. A. Pelaez and J. Rattya, Trace class criteria for Toeplitz and composition operators on small Bergman spaces, Adv. Math. 293 (2016), 606-643. https://doi.org/10.1016/j.aim.2016.02.017 
  21. D. Sarason and J.-N. O. Silva, Composition operators on a local Dirichlet space, J. Anal. Math. 87 (2002), 433-450. https://doi.org/10.1007/BF02868484 
  22. K. Zhu, Operator Theory in Function Spaces, second edition, Mathematical Surveys and Monographs, 138, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/surv/138