Acknowledgement
The author would like to thank his advisor, professor Hasi Wulan, for his kindness and constant encouragement. The author is very grateful for the meticulous review and valuable suggestions from the anonymous reviewers!
References
- A. Aleman, Multiplication Operator on Hilbert Spaces of Analytic Functions, Habilitation, FernUniversitat Hagen, 1993.
- H. Arroussi, I. Park, and J. Pau, Schatten class Toeplitz operators acting on large weighted Bergman spaces, Studia Math. 229 (2015), no. 3, 203-221. https://doi.org/10.4064/sm8345-12-2015
- G. Bao, Mobius invariant Dirichlet type spaces, J. Math. Anal. Appl. 466 (2018), no. 2, 1359-1372. https://doi.org/10.1016/j.jmaa.2018.06.059
- G. Bao, N. G. Gogus, and S. Pouliasis, Qp spaces and Dirichlet type spaces, Canad. Math. Bull. 60 (2017), no. 4, 690-704. https://doi.org/10.4153/CMB-2017-006-1
- G. Bao, N. G. Gogus, and S. Pouliasis, On Dirichlet spaces with a class of superharmonic weights, Canad. J. Math. 70 (2018), no. 4, 721-741. https://doi.org/10.4153/CJM-2017-005-1
- G. Bao, J. Mashreghi, S. Pouliasis, and H. Wulan, Mobius invariant function spaces and Dirichlet spaces with superharmonic weights, J. Aust. Math. Soc. 106 (2019), no. 1, 1-18. https://doi.org/10.1017/S1446788718000022
- G. Bao, H. Wulan, and F. Ye, The range of the Cesaro operator acting on H∞, Canad. Math. Bull. 63 (2020), no. 3, 633-642. https://doi.org/10.4153/s0008439519000717
- B. Berndtsson, Weighted estimates for the ∂-equation, Complex Analysis and Geometry (Columbus, OH, 1999), 43-57, Ohio State Univ. Math. Res. Inst. Publ., 9, De Gruyter, Berlin, 2001.
- O. Constantin, Carleson embeddings and some classes of operators on weighted Bergman spaces, J. Math. Anal. Appl. 365 (2010), no. 2, 668-682. https://doi.org/10.1016/j.jmaa.2009.11.035
- O. El-Fallah, K. Kellay, H. Klaja, J. Mashreghi, and T. Ransford, Dirichlet spaces with superharmonic weights and de Branges-Rovnyak spaces, Complex Anal. Oper. Theory 10 (2016), no. 1, 97-107. https://doi.org/10.1007/s11785-015-0474-7
- O. El-Fallah, H. Mahzouli, I. Marrhich, and H. Naqos, Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces, J. Funct. Anal. 270 (2016), no. 12, 4614-4630. https://doi.org/10.1016/j.jfa.2016.01.005
- O. El-Fallah, H. Mahzouli, I. Marrhich, and H. Naqos, Toeplitz operators on harmonically weighted Bergman spaces and applications to composition operators on Dirichlet spaces, J. Math. Anal. Appl. 466 (2018), no. 1, 471-489. https://doi.org/10.1016/j.jmaa.2018.06.007
- L. V. Hormander, An Introduction to Complex Analysis in Several Variables, third edition, North-Holland Mathematical Library, 7, North-Holland, Amsterdam, 1990.
- P. Lin and R. Rochberg, Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pacific J. Math. 173 (1996), no. 1, 127-146. http://projecteuclid.org/euclid.pjm/1102365846 102365846
- D. H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), no. 2, 345-368. https://doi.org/10.1016/0022-1236(87)90072-3
- D. H. Luecking and K. Zhu, Composition operators belonging to the Schatten ideals, Amer. J. Math. 114 (1992), no. 5, 1127-1145. https://doi.org/10.2307/2374892
- C. A. McCarthy, Cp, Israel J. Math. 5 (1967), 249-271. https://doi.org/10.1007/BF02771613
- J. M. Ortega and J. F'abrega, Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111-137. https://doi.org/10.5802/aif.1509
- J. Pau and P. A. Perez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl. 401 (2013), no. 2, 682-694. https://doi.org/10.1016/j.jmaa.2012.12.052
- J. A. Pelaez and J. Rattya, Trace class criteria for Toeplitz and composition operators on small Bergman spaces, Adv. Math. 293 (2016), 606-643. https://doi.org/10.1016/j.aim.2016.02.017
- D. Sarason and J.-N. O. Silva, Composition operators on a local Dirichlet space, J. Anal. Math. 87 (2002), 433-450. https://doi.org/10.1007/BF02868484
- K. Zhu, Operator Theory in Function Spaces, second edition, Mathematical Surveys and Monographs, 138, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/surv/138