DOI QR코드

DOI QR Code

Micro Light-Emitting Diodes with 3D-Printed Hydrogel Microlens for Optical Property Enhancements

3D 프린팅된 하이드로젤 마이크로렌즈를 통한 마이크로 LED의 광학적 특성 향상 연구

  • Yujin Ko (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jeong Hyeon Kim (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Sang Yoon Park (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Kang Hyeon Kim (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seong Min Hong (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Bo-Yeon Lee (Department of Bionic Machinery, Korea Institute of Machinery & Materials) ;
  • Han Eol Lee (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 고유진 (전북대학교 재료공학과) ;
  • 김정현 (전북대학교 재료공학과) ;
  • 박상윤 (전북대학교 재료공학과) ;
  • 김강현 (전북대학교 재료공학과) ;
  • 홍성민 (전북대학교 재료공학과) ;
  • 이보연 (한국기계연구원 바이오기계연구실) ;
  • 이한얼 (전북대학교 재료공학과)
  • Received : 2024.07.07
  • Accepted : 2024.07.19
  • Published : 2024.09.01

Abstract

Micro light-emitting diodes (µLEDs) have been utilized in various fields such as displays, and smart devices, due to their superior stabilities. Since the applications of the µLEDs have been extended to medical devices and wearable sensors, excellent optical properties and uniformity of the µLEDs are important. Hence, several researchers have investigated to enhance the optical efficiency of the µLEDs through micro/nano lens. However, the reported methods for realizing the micro/nano lens have some drawbacks such as complex and high-cost manufacturing processes. Herein, we developed µLEDs with 3D-printed hydrogel microlenses. The printed hydrogel had high transparency and excellent adhesive strength, allowing it to attach onto top surface of the µLEDs without any additional adhesives. Microscale printing technology using a 3D printer achieved quick and fine printing in desired shapes and arrangements, showing the possibility of mass production. The 3D-printed microlens can be applied to improve not only the optical properties of µLEDs but also other optical devices.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT and Future Planning (MSIT) (NRF-2022R1A4A3033320 and RS-2023-00278906), and the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant funded by the Korean Government (Ministry of Science and ICT, 2023).

References

  1. M. Xu, J. M. David, and S. H. Kim, Int. J. Financ. Res., 9, 90 (2018). doi: https://doi.org/10.5430/ijfr.v9n2p90
  2. K. Rabah, Lake Inst. J., 1, 1 (2018).
  3. J. H. Alias, N. H. Norma, S. J. Doe, and A. B. Smith, Int. J. Eng. Technol. (UAE), 7, 3722 (2018). doi: https://doi.org/10.14419/ijet.v7i4.21244
  4. S. Zhang, H. Zheng, L. Zhou, H. Li, Y. Chen, C. Wei, T. Wu, W. Lv, G. Zhang, S. Zhang, Z. Gong, B. Jia, H. Lin, Z. Gao, W. Xu, and H. Ning, Crystals, 13, 1001 (2023). doi: https://doi.org/10.3390/cryst13071001
  5. Y. Huang, E. L. Hsiang, M. Y. Deng, and S. T. Wu, Light: Sci. Appl., 9, 105 (2020). doi: https://doi.org/10.1038/s41377-020-0341-9
  6. W. C. Miao, F. H. Hsiao, Y. Sheng, T. Y. Lee, Y. H. Hong, C. W. Tsai, H. L. Chen, Z. Liu, C. L. Lin, R. J. Chung, Z. T. Ye, R. H. Horng, S. C. Chen, H. C. Kuo, and J. H. He, Adv. Opt. Mater., 12, 2300112 (2024). doi: https://doi.org/10.1002/adom.202300112
  7. T. Jung, J. H. Choi, S. H. Jang, and S. J. Han, SID Symp. Dig. Tech. Pap., 50, 442 (2019). doi: https://doi.org/10.1002/sdtp.12951
  8. J. H. Lee, Y. Ahn, H. E. Lee, Y. N. Jang, A. Y. Park, S. Kim, Y. H. Jung, S. H. Sung, J. H. Shin, S. H. Lee, S. H. Park, K. S. Kim, M. S. Jang, B. J. Kim, S. H. Oh, and K. J. Lee, Adv. Healthcare Mater., 12, 2201796 (2023). doi: https://doi.org/10.1002/adhm.202201796
  9. T. Y. Lee, L. Y. Chen, Y. Y. Lo, S. S. Swayamprabha, A. Kumar, Y. M. Huang, S. C. Chen, H. W. Zan, F. C. Chen, R. H. Horng, and H. C. Kuo, ACS Photonics, 9, 2905 (2022). doi: https://doi.org/10.1021/acsphotonics.2c00285
  10. H. Ito, M. Arai, Y. Matsui, and D. Itagaki, J. Non-Cryst. Solids, 362, 246 (2012). doi: https://doi.org/10.1016/j.jnoncrysol.2012.10.018
  11. D. Baek, S. H. Lee, B. H. Jun, and S. H. Lee, Nanotechnology for Bioapplications, Advances in Experimental Medicine and Biology, 217-233 (2021). doi: https://doi.org/10.1007/978-981-33-6158-4_9
  12. A. Pimpin and W. Srituravanich. Eng. J., 16, 37 (2012). doi: https://doi.org/10.4186/ej.2012.16.1.37
  13. Z. Gao, L. Han, J. Wan, G. Fu, X. Yang, Q. Guo, X. Ji, W. Chu, H. Tian, and M. Lai, Arabian J. Chem., 17, 105789 (2024). doi: https://doi.org/10.1016/j.arabjc.2024.105789
  14. Y. Xu, P. Huang, S. To, L. M. Zhu, and Z. Zhu, Adv. Opt. Mater., 10, 2270066 (2022). doi: https://doi.org/10.1002/adom.202270066
  15. H. E. Lee, Electronics, 10, 2644 (2021). doi: https://doi.org/10.3390/electronics10212644
  16. H. E. Lee, J. H. Shin, J. H. Park, S. K. Hong, S. H. Park, S. H. Lee, J. H. Lee, I. S. Kang, and K. J. Lee, Adv. Funct. Mater., 29, 1808075 (2019). doi: https://doi.org/10.1002/adfm.201808075
  17. X. Zhou, P. Tian, C. W. Sher, J. Wu, H. Liu, R. Liu, and H. C. Kuo, Prog. Quantum Electron., 71, 100263 (2020). doi: https://doi.org/10.1016/j.pquantelec.2020.100263
  18. Z. Chen, S. Yan, and C. Danesh, J. Phys. D: Appl. Phys., 54, 123001 (2021). doi: https://doi.org/10.1088/1361-6463/abcfe4
  19. Y. Zhao, J. Liang, Q. Zeng, Y. Li, P. Li, K. Fan, W. Sun, J. Lv, Y. Qin, Q. Wang, J. Tao, and W. Wang, Opt. Express, 29, 20217 (2021). doi: https://doi.org/10.1364/oe.428482
  20. H. E. Lee, J. H. Choi, S. H. Lee, M. Jeong, J. H. Shin, D. J. Joe, D. H. Kim, C. W. Kim, J. H. Park, J. H. Lee, D. Kim, C. S. Shin, and K. J. Lee, Adv. Mater., 30, 1870208 (2018). doi: https://doi.org/10.1002/adma.201870208
  21. H. E. Lee, J. H. Shin, J. H. Park, S. K. Hong, S. H. Park, S. H. Lee, J. H. Lee, I. S. Kang, and K. J. Lee, Adv. Funct. Mater., 29, 1808075 (2019). doi: https://doi.org/10.1002/adfm.201808075
  22. H. E. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 221 (2021). doi: https://doi.org/10.4313/JKEM.2021.34.4.221
  23. D. Larrea-Wachtendorff, V. D. Grosso, and G. Ferrari. Gels, 8, 152 (2022). doi: https://doi.org/10.3390/gels8030152
  24. S. H. Lee, J. Kim, J. H. Shin, H. E. Lee, I. S. Kang, K. Gwak, D. S. Kim, D. Kim, and K. J. Lee, Nano Energy, 44, 447 (2018). doi: https://doi.org/10.1016/j.nanoen.2017.12.011
  25. H. E. Lee, S. H. Lee, M. Jeong, J. H. Shin, Y. Ahn, D. Kim, S. H. Oh, S. H. Yun, and K. J. Lee, ACS Nano, 12, 9587 (2018). doi: https://doi.org/10.1021/acsnano.8b05568
  26. H. E. Lee, D. Lee, T. I. Lee, J. Jang, J. Jang, Y. W. Lim, J. H. Shin, S. M. Kang, G. M. Choi, D. J. Joe, J. H. Kim, S. H. Lee, S. H. Park, C. B. Park, T. S. Kim, K. J. Lee, and B. S. Bae, ACS Appl. Mater. Interfaces, 14, 28258 (2022). doi: https://doi.org/10.1021/acsami.2c03922
  27. H. E. Lee, D. Lee, T. I. Lee, J. H. Shin, G. M. Choi, C. Kim, S. H. Lee, J. H. Lee, Y. H. Kim, S. M. Kang, S. H. Park, I. S. Kang, T. S. Kim, B. S. Bae, and K. J. Lee, Nano Energy, 55, 454 (2019). doi: https://doi.org/10.1016/j.nanoen.2018.11.017
  28. J. Shin, H. Kim, S. Sundaram, J. Jeong, B. I. Park, C. S. Chang, J. Choi, T. Kim, M. Saravanapavanantham, K. Lu, S. Kim, J. M. Suh, K. S. Kim, M. K. Song, Y. Liu, K. Qiao, J. H. Kim, Y. Kim, J. H. Kang, J. Kim, D. Lee, J. Lee, J. S. Kim, H. E. Lee, H. Yeon, H. S. Kum, S. H. Bae, V. Bulovic, K. J. Yu, K. Lee, K. Chung, Y. J. Hong, A. Ougazzaden, and J. Kim, Nature, 614, 81 (2023). doi: https://doi.org/10.1038/s41586-022-05612-1
  29. G. H. Ju, J. H. Kim, S. Y. Park, K. H. Kim, and H. E. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 37, 241 (2024). doi: https://doi.org/10.4313/JKEM.2024.37.3.2
  30. H. Yuk, B. Lu, S. Lin, K. Qu, J. Xu, J. Luo, and X. Zhao, Nat. Commun., 11, 1604 (2020). doi: https://doi.org/10.1038/s41467-020-15316-7
  31. Y. Fang, H. Yu, L. Chen, and S. Chen, Chem. Mater., 21, 4711 (2009). doi: https://doi.org/10.1021/cm9020063
  32. P. Cass, W. Knower, E. Pereeia, N. P. Holmes, and T. Hughes, Ultrason. Sonochem., 17, 326 (2010). doi: https://doi.org/10.1016/j.ultsonch.2009.08.008
  33. C. A. Bonino, J. E. Samorezov, O. Jeon, E. Alsberg, and S. A. Khan, Soft Matter, 7, 11510 (2011). doi: https://doi.org/10.1039/c1sm06109g
  34. X. Li, J. Gou, and O. Ilegbusi, Res. Sq. (2023). doi: https://doi.org/10.21203/rs.3.rs-2968926/v1
  35. J. S. Song, Y. C. Choi, S. H. Seo, D. C. Oh, M. W. Cho, T. Yao, and M. H. Oh, J. Cryst. Growth, 264, 98 (2004). doi: https://doi.org/10.1016/j.jcrysgro.2003.12.063
  36. R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, Nat. Mater., 9, 929 (2010). doi: https://doi.org/10.1038/nmat2879