DOI QR코드

DOI QR Code

Controlled Synthesis of Colloidal Cu Nanowires and Nanoplates and Their Tunable Localized Surface Plasmon Resonances

  • Seokhwan Kim (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Jong Wook Roh (School of Nano and Materials Science and Engineering, Kyungpook National University) ;
  • Dong Choon Hyun (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Seonhwa Park (Regional Leading Research Center for Smart Energy System, Kyungpook National University) ;
  • Yuho Min (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
  • Received : 2024.06.24
  • Accepted : 2024.07.23
  • Published : 2024.09.01

Abstract

Precise control over the morphology of nanostructures is critical for tailoring their physical and chemical properties. This study addresses the challenge of developing a simple, integrated method for synthesizing both 1D and 2D colloidal Cu nanostructures in a single system, achieving successful tuning of their localized surface plasmon resonance (LSPR) properties. A facile hydrothermal synthesis utilizing potassium iodide (KI) and hexadecylamine (HDA) is presented for controlling Cu nanostructure morphologies. The key to achieving 1D nanowires (NWs) and 2D nanoplates (NPs) depends on the controlled adsorption of HDA molecules and iodide (I-) ions on specific crystal facets. Depending on the morphologies, the resultant Cu nanostructures exhibit tunable LSPR peaks from 558 nm [nanoplates (NPs)] to 590 nm [nanowires (NWs)]. These results pave the way for the scalable and cost-effective production of plasmonic Cu nanostructures with tunable optical properties, holding promise for applications in sensing, catalysis, and photonic devices.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (2021R1A5A8033165 and RS-2023-00241159).

References

  1. Y. Min, G. D. Moon, C. E. Kim, J. H. Lee, H. Yang, A. Soon, and U. Jeong, J. Mater. Chem. C, 2, 6222 (2014).  doi: https://doi.org/10.1039/C4TC00586D
  2. T. H. Yang, Y. Shi, A. Janssen, and Y. Xia, Angew. Chem. Int. Ed., 59, 15378 (2020).  doi: https://doi.org/10.1002/anie.201911135
  3. A. K. Pearce, T. R. Wilks, M. C. Arno, and R. K. O'Reilly, Nat. Rev. Chem., 5, 21 (2021).  doi: https://doi.org/10.1038/s41570-020-00232-7
  4. Y. Y. Cai, Y. C. Choi, and C. R. Kagan, Adv. Mater., 35, 2108104 (2023).  doi: https://doi.org/10.1002/adma.202108104
  5. X. Ma, H. Sun, Y. Wang, X. Wu, and J. Zhang, Nano Energy, 53, 932 (2018).  doi: https://doi.org/10.1016/j.nanoen.2018.09.042
  6. M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol., 10, 25 (2015).  doi: https://doi.org/10.1038/nnano.2014.311
  7. Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, and W. D. Wei, Chem. Rev., 118, 2927 (2018).  doi: https://doi.org/10.1021/acs.chemrev.7b00430
  8. S. Linic, U. Aslam, C. Boerigter, and M. Morabito, Nat. Mater., 14, 567 (2015).  doi: https://doi.org/10.1038/nmat4281
  9. N. Jiang, X. Zhuo, and J. Wang, Chem. Rev., 118, 3054 (2018).  doi: https://doi.org/10.1021/acs.chemrev.7b00252
  10. Y. Min, H. J. Seo, J. J. Choi, B. D. Hahn, and G. D. Moon, Nanotechnology, 29, 345603 (2018).  doi: https://doi.org/10.1088/1361-6528/aac929
  11. T. P. Araujo, J. Quiroz, E.C.M. Barbosa, and P.H.C. Camargo, Curr. Opin. Colloid Interface Sci., 39, 110 (2019).  doi: https://doi.org/10.1016/j.cocis.2019.01.014
  12. S. Kawata, Y. Inouye, and P. Verma, Nat. Photonics, 3, 388 (2009).  doi: https://doi.org/10.1038/nphoton.2009.111
  13. J. Lee, D. J. Jeon, and J. S. Yeo, Adv. Mater., 33, 2006606 (2021).  doi: https://doi.org/10.1002/adma.202006606
  14. Z. Wang, B. Ai, H. Mohwald, and G. Zhang, Adv. Opt. Mater., 6, 1800402 (2018).  doi: https://doi.org/10.1002/adom.201800402
  15. G. Demirel, H. Usta, M. Yilmaz, M. Celik, H. A. Alidagi, and F. Buyukserin, J. Mater. Chem. C, 6, 5314 (2018).  doi: https://doi.org/10.1039/C8TC01168K
  16. U. Aslam, V. G. Rao, S. Chavez, and S. Linic, Nat. Catal., 1, 656 (2018).  doi: https://doi.org/10.1038/s41929-018-0138-x
  17. L. Scarabelli, M. Sun, X. Zhuo, S. Yoo, J. E. Millstone, M. R. Jones, and L. M. Liz-Marzan, Chem. Rev., 123, 3493 (2023).  doi: https://doi.org/10.1021/acs.chemrev.3c00033
  18. K. Y. Shin, J. S. Lee, J. Y. Hong, and J. Jang, Chem. Commun., 50, 3093 (2014).  doi: https://doi.org/10.1039/C3CC49782H
  19. C. K. Kim, G. J. Lee, M. K. Lee, and C. K. Rhee, Powder Technol., 263, 1 (2014).  doi: https://doi.org/10.1016/j.powtec.2014.04.064
  20. S. Hong, C. Liu, S. Hao, W. Fu, J. Peng, B. Wu, and N. Zheng, npj Flexible Electron., 6, 17 (2022).  doi: https://doi.org/10.1038/s41528-022-00151-1
  21. Y. Min, J. Kwak, A. Soon, and U. Jeong, Acc. Chem. Res., 47, 2887 (2014).  doi: https://doi.org/10.1021/ar500133w
  22. Y. Min, E. Im, G. T. Hwang, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, W. H. Yoon, D. S. Park, D. C. Hyun, and G. D. Moon, Nano Res., 12, 1750 (2019).  doi: https://doi.org/10.1007/s12274-019-2432-6
  23. J. A. da Silva, M. R. Meneghetti, and P. A. Netz, ACS Appl. Nano Mater., 3, 5343 (2020).  doi: https://doi.org/10.1021/acsanm.0c00708
  24. M. J. Kim, S. Alvarez, Z. Chen, K. A. Fichthorn, and B. J. Wiley, J. Am. Chem. Soc., 140, 14740 (2018).  doi: https://doi.org/10.1021/jacs.8b08053
  25. C. Slazemann, J. Urban, I. Lisiecki, and M. P. Pileni, Adv. Funct. Mater., 15, 1277 (2005).  doi: https://doi.org/10.1002/adfm.200400594
  26. I. Pastoriza-Santos, A. Sanchez-Iglesias, B. RodriguezGonzalez, and L. M. Liz-Marzan, Small, 5, 440 (2009).  doi: https://doi.org/10.1002/smll.200801088
  27. J. W. Lee, J. Han, D. S. Lee, S. Bae, S. H. Lee, S. K. Lee, B. J. Moon, C. J. Choi, G. Wang, and T. W. Kim, Small, 14, 1703312 (2018).  doi: https://doi.org/10.1002/smll.201703312
  28. K. Wu, C. Sun, Z. Wang, Q. Song, X. Bai, X. Yu, Q. Li, Z. Wang, H. Zhang, J. Zhang, X. Tong, Y. Liang, A. Khosla, and Z. Zhao, ACS Materials Lett., 4, 650 (2022).  doi: https://doi.org/10.1021/acsmaterialslett.2c00149
  29. H. J. Yang, S. Y. He, and H. Y. Tuan, Langmuir, 30, 602 (2014).  doi: https://doi.org/10.1021/la4036198
  30. A. Sheng, S. Khuje, J. Yu, T. Parker, J. Y. Tsai, L. An, Y. Huang, Z. Li, C. G. Zhuang, L. Kester, Q. Yan, and S. Ren, ACS Appl. Nano Mater., 5, 4028 (2022).  doi: https://doi.org/10.1021/acsanm.2c00019
  31. C. Lofton and W. Sigmund, Adv. Funct. Mater., 15, 1197 (2005).  doi: https://doi.org/10.1002/adfm.200400091
  32. V. Germain, J.L.D. Ingert, Z. L. Wang, and M. P. Pileni, J. Phys. Chem. B, 107, 8717 (2003).  doi: https://doi.org/10.1021/jp0303826
  33. Z. Lyu, Y. Shang, and Y. Xia, Acc. Mater. Res., 3, 1137 (2022).  doi: https://doi.org/10.1021/accountsmr.2c00134
  34. Y. Min, H. J. Seo, J. J. Choi, B. D. Hahn, and G. D. Moon, Nanotechnology, 29, 345603 (2018).  doi: https://doi.org/10.1088/1361-6528/aac929
  35. H. Chen, L. Shao, Q. Li, and J. Wang, Chem. Soc. Rev., 42, 2679 (2013).  doi: https://doi.org/10.1039/C2CS35367A
  36. N. Kapuria, N. N. Patil, K. M. Ryan, and S. Singh, Nanoscale, 14, 2885 (2022).  doi: https://doi.org/10.1039/D1NR06990J