DOI QR코드

DOI QR Code

저온 열처리를 통한 MOSFETs 소자의 방사선 손상 복구

Recovery of Radiation-Induced Damage in MOSFETs Using Low-Temperature Heat Treatment

  • 박효준 (충북대학교 반도체공학부) ;
  • 길태현 (충북대학교 반도체공학부) ;
  • 연주원 (충북대학교 반도체공학부) ;
  • 이문권 (충북대학교 반도체공학부) ;
  • 윤의철 (충북대학교 반도체공학부) ;
  • 박준영 (충북대학교 반도체공학부)
  • Hyo-Jun Park (School of Semiconductor Engineering, Chungbuk National University) ;
  • Tae-Hyun Kil (School of Semiconductor Engineering, Chungbuk National University) ;
  • Ju-Won Yeon (School of Semiconductor Engineering, Chungbuk National University) ;
  • Moon-Kwon Lee (School of Semiconductor Engineering, Chungbuk National University) ;
  • Eui-Cheol Yun (School of Semiconductor Engineering, Chungbuk National University) ;
  • Jun-Young Park (School of Semiconductor Engineering, Chungbuk National University)
  • 투고 : 2024.05.08
  • 심사 : 2024.05.21
  • 발행 : 2024.09.01

초록

Various process modifications have been used to minimize SiO2 gate oxide aging in metal-oxide-semiconductor field-effect transistors (MOSFETs). In particular, post-metallization annealing (PMA) with a deuterium ambient can effectively eliminate both bulk traps and interface traps in the gate oxide. However, even with the use of PMA, it remains difficult to prevent high levels of radiation-induced gate oxide damage such as total ionizing dose (TID) during long-term missions. In this context, additional low-temperature heat treatment (LTHT) is proposed to recover from radiation-induced damage. Positive traps in the damaged gate oxide can be neutralized using LTHT, thereby prolonging device reliability in harsh radioactive environments.

키워드

과제정보

본 과제(결과물)는 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력 기반 지역혁신 사업의 결과입니다(2021RIS-001).

참고문헌

  1. C. Hu, Proc. IEEE, 81, 682 (1993). doi: https://doi.org/10.1109/5.220900
  2. A. Acovic, G. La Rosa, and Y. C. Sun, Microelectron. Reliab., 36, 845 (1996). doi: https://doi.org/10.1016/0026-2714(96)00022-4
  3. J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-Cavrois, IEEE Trans. Nucl. Sci., 55, 1833 (2008). doi: https://doi.org/10.1109/TNS.2008.2001040
  4. D. H. Wang, S. S. Yoon, J. Y. Ku, D. H. Jung, K. S. Lee, D. Kim, and J. Y. Park, IEEE Trans. Device Mater. Reliab., 23, 297 (2023). doi: https://doi.org/10.1109/tdmr.2023.3275947
  5. T. R. Oldham and F. B. McLean, IEEE Trans. Nucl. Sci., 50, 483 (2003). doi: https://doi.org/10.1109/TNS.2003.812927
  6. N. M. Johnson, D. K. Biegelsen, and M. D. Moyer, J. Vac. Sci. Technol., 19, 390 (1981). doi: https://doi.org/10.1116/1.571070
  7. J. Y. Park, D. I. Moon, H. Bae, Y. T. Roh, M. L. Seol, B. H. Lee, C. H. Jeon, H. C. Lee, and Y. K. Choi, IEEE Electron Device Lett., 37, 843 (2016). doi: https://doi.org/10.1109/LED.2016.2574341
  8. Ph. Avouris, R. E. Walkup, A. R. Rossi, T. C. Shen, G. C. Abeln, J. R. Tucker, and J. W. Lyding, Chem. Phys. Lett., 257, 148 (1996). doi: https://doi.org/10.1016/0009-2614(96)00518-0
  9. E. Cartier, J. H. Stathis, and D. A. Buchanan, Appl. Phys. Lett., 63, 1510 (1993). doi: https://doi.org/10.1063/1.110758
  10. R. H. Maurer, M. E. Fraeman, M. N. Martin, and D. R. Roth, Johns Hopkins APL Tech. Dig., 28, 17 (2008).
  11. W. J. Snoeys, T.A.P. Gutierrez, and G. Anelli, IEEE Trans. Nucl. Sci., 49, 1829 (2002). doi: https://doi.org/10.1109/TNS.2002.801534
  12. M. Bucher, A. Nikolaou, A. Papadopoulou, N. Makris, L. Chevas, G. Borghello, H. D. Koch, and F. Faccio, Proc. 2018 IEEE International Conference on Microelectronic Test Structures (ICMTS) (IEEE, Austin, USA, 2018) p. 166. doi: https://doi.org/10.1109/ICMTS.2018.8383790
  13. G. P. Platcheck, G. S. Cardoso, and T. R. Balen, IEEE Trans. Aerosp. Electron. Syst., 59, 2072 (2022). doi: https://doi.org/10.1109/TAES.2022.3210079
  14. T. H. Kil, J. H. Kim, J. Y. Ku, D. H. Wang, D. H. Jung, M. H. Kang, and J. Y. Park, IEEE Trans. Electron Devices, 71, 1078 (2024). doi: https://doi.org/10.1109/TED.2023.3344090
  15. Y. Liu, W. J. Wu, Y. F. En, L. Wang, Z. F. Lei, and X. H. Wang, IEEE Electron Device Lett., 35, 369 (2014). doi: https://doi.org/10.1109/LED.2014.2301801
  16. A. J. Lelis, T. R. Oldham, H. E. Boesch, and F. B. McLean, IEEE Trans. Nucl. Sci., 36, 1808 (1989). doi: https://doi.org/10.1109/23.45373
  17. P. J. McWhorter, S. L. Miller, and W. M. Miller, IEEE Trans. Nucl. Sci., 37, 1682 (1990). doi: https://doi.org/10.1109/23.101177
  18. J. Y. Park, D. I. Moon, G. B. Lee, and Y. K. Choi, IEEE Trans. Electron Devices, 67, 777 (2020). doi: https://doi.org/10.1109/TED.2020.2964846
  19. H. G. Lee, S. Y. Oh, and G. Fuller, IEEE Trans. Electron Devices, 29, 346 (1982). doi: https://doi.org/10.1109/T-ED.1982.20707
  20. Y. Qiu, R. Wang, Q. Huang, and R. Huang, IEEE Trans. Electron Devices, 61, 1284 (2014). doi: https://doi.org/10.1109/TED.2014.2312330
  21. S. Amor, N. Andre, V. Kilchytska, F. Tounsi, B. Mezghani, P. Gerard, Z. Ali, F. Udrea, D. Flandre, and L. A. Francis, Nanotechnology, 28, 184001 (2017). doi: https://doi.org/10.1088/1361-6528/aa66a4