DOI QR코드

DOI QR Code

SnO2/AgNi/SnO2 다중층 구조의 투명 전극 특성

Transparent Electrode Characteristics of SnO2/AgNi/SnO2 Multilayer Structures

  • 황민호 (전남대학교 화학공학부) ;
  • 이현용 (전남대학교 화학공학부)
  • Min-Ho Hwang (School of Chemical Engineering, Chonnam National University) ;
  • Hyun-Yong Lee (School of Chemical Engineering, Chonnam National University)
  • 투고 : 2024.04.05
  • 심사 : 2024.04.19
  • 발행 : 2024.09.01

초록

The transparent electrode characteristics of the SnO2/AgNi/SnO2 (OMO) multilayer structures prepared by sputtering were investigated according to the annealing temperature. Ni-doped Ag of various compositions was selected as the metal layer and heat treatment was performed at 100~300℃ to evaluate the thermal stability of the metals. The manufactured OMO multilayer structures were heat treated for 6 hours at 400~600℃ in an N2 atmosphere. The structural, electrical, and optical properties of the OMO structures before and after annealing were evaluated and analyzed using a UV-VIS spectrophotometer, 4-point probe, XPS, FE-SEM, etc. OMO with Ni-doped Ag shows improved performance due to the reduction of structural defects of Ag during annealing, but OMO structure with pure Ag shows degradation characteristics due to Ag diffusion into the oxide layer during high-temperature annealing. The figure of merit (FOM) of SnO2/Ag/SnO2 was highest at room temperature and gradually decreased as the heat treatment temperature increased. On the other hand, the FOM value of SnO2/AgNi/SnO2 mostly showed its maximum value at high temperature(~550℃). In particular, the FOM value of SnO2/Ag-Ni (3.2 at%)/SnO2 was estimated to be approximately 2.38×10-2-1. Compared to transparent electrodes made of other similar materials, the FOM value of the SnO2/Ag-Ni (3.2 at%)/SnO2 multilayer structure is competitive and is expected to be used as an alternative transparent conductive electrode in various devices.

키워드

과제정보

이 논문은 전남대학교 연구비 지원에 의하여 연구되었음(과제번호: 2022-0128).

참고문헌

  1. E. Medvedovski, N. A. Alvarez, C. J. Szepesi, O. Yankov, and P. Lippens, Adv. Appl. Ceram., 112, 243 (2013). doi: https://doi.org/10.1179/1743676112Y.0000000066
  2. F. Chaabouni, J. B. Belgacem, and M. Abaab, Chin. J. Phys., 52, 272 (2014). doi: https://doi.org/10.6122/CJP.52.272
  3. R. D. King, SAE Tech. Pap. Ser., 740158 (1974). doi: https://doi.org/10.4271/740158
  4. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).
  5. N. K. Maksimova, A. V. Almaev, E. Y. Sevastyanov, A. I. Potekaev, E. V. Chernikov, N. V. Sergeychenko, P. M. Korusenko, and S. N. Nesov, Coatings, 9, 423 (2019). doi: https://doi.org/10.3390/coatings9070423
  6. T. Minami, Semicond. Sci. Technol., 20, S35 (2005). doi: https://doi.org/10.1088/0268-1242/20/4/004
  7. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Thin Solid Films, 445, 263 (2003). doi: https://doi.org/10.1016/S0040-6090(03)01158-1
  8. H. Kim and A. Pique, Appl. Phys. Lett., 84, 218 (2004). doi: https://doi.org/10.1063/1.1639515
  9. A. V. Emeline, Y. Furubayashi, X. Zhang, M. Jin, T. Murakami, and A. Fujishima, J. Phys. Chem. B, 109, 24441 (2005). doi: https://doi.org/10.1021/jp055090e
  10. E. J. Gillham, J. S. Preston, and B. E. Williams, London, Edinburgh Dublin Philos. Mag. J. Sci., 46, 1051 (2010). doi: https://doi.org/10.1080/14786441008521119
  11. H. Kong and H. Y. Lee, Thin Solid Films, 696, 137759 (2020). doi: https://doi.org/10.1016/j.tsf.2019.137759
  12. Y. Cho, N. S. Parmar, S. Nahm, and J. W. Choi, J. Alloys Compd., 694, 217 (2017). doi: https://doi.org/10.1016/j.jallcom.2016.09.293
  13. J. A. Jeong, Y. S. Park, and H. K. Kim, J. Appl. Phys., 107, 023111 (2010). doi: https://doi.org/10.1063/1.3294605
  14. R. Pandey, B. Angadi, S. K. Kim, J. W. Choi, D. K. Hwang, and W. K. Choi, Opt. Mater. Express, 4, 2078 (2014). doi: https://doi.org/10.1364/OME.4.002078
  15. J. W. Jeong, H. Kong, and H. Y. Lee, Superlattices Microstruct., 133, 106187 (2019). doi: https://doi.org/10.1016/j.spmi.2019.106187
  16. H. Y. Lee and T. Yao, J. Appl. Phys., 93, 819 (2003). doi: https://doi.org/10.1063/1.1530726
  17. G. Haacke, J. Appl. Phys., 47, 4086 (1976). doi: https://doi.org/10.1063/1.323240
  18. A. Indluru and T. L. Alford, J. Appl. Phys., 105, 123528 (2009). doi: https://doi.org/10.1063/1.3153977
  19. L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, Appl. Phys. Lett., 98, 022106 (2011). doi: https://doi.org/10.1063/1.3541885
  20. S. Venkatachalam, H. Nanjo, K. Kawasaki, Y. Wakui, H. Hayashi, and T. Ebina, Appl. Surf. Sci., 257, 8923 (2011). doi: https://doi.org/10.1016/j.apsusc.2011.05.065
  21. H. J. Kim, H. H. Lee, J. Kal, J. Hahn, and H. K. Kim, AIP Adv., 5, 107236 (2015). doi: https://doi.org/10.1063/1.4935187
  22. C. Loka and K. S. Lee, Appl. Surf. Sci., 415, 35 (2017). doi: https://doi.org/10.1016/j.apsusc.2016.11.082