• Title/Summary/Keyword: $SnO_2/AgNi/SnO_2$

Search Result 14, Processing Time 0.021 seconds

Transparent Electrode Characteristics of SnO2/AgNi/SnO2 Multilayer Structures (SnO2/AgNi/SnO2 다중층 구조의 투명 전극 특성)

  • Min-Ho Hwang;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.500-506
    • /
    • 2024
  • The transparent electrode characteristics of the SnO2/AgNi/SnO2 (OMO) multilayer structures prepared by sputtering were investigated according to the annealing temperature. Ni-doped Ag of various compositions was selected as the metal layer and heat treatment was performed at 100~300℃ to evaluate the thermal stability of the metals. The manufactured OMO multilayer structures were heat treated for 6 hours at 400~600℃ in an N2 atmosphere. The structural, electrical, and optical properties of the OMO structures before and after annealing were evaluated and analyzed using a UV-VIS spectrophotometer, 4-point probe, XPS, FE-SEM, etc. OMO with Ni-doped Ag shows improved performance due to the reduction of structural defects of Ag during annealing, but OMO structure with pure Ag shows degradation characteristics due to Ag diffusion into the oxide layer during high-temperature annealing. The figure of merit (FOM) of SnO2/Ag/SnO2 was highest at room temperature and gradually decreased as the heat treatment temperature increased. On the other hand, the FOM value of SnO2/AgNi/SnO2 mostly showed its maximum value at high temperature(~550℃). In particular, the FOM value of SnO2/Ag-Ni (3.2 at%)/SnO2 was estimated to be approximately 2.38×10-2-1. Compared to transparent electrodes made of other similar materials, the FOM value of the SnO2/Ag-Ni (3.2 at%)/SnO2 multilayer structure is competitive and is expected to be used as an alternative transparent conductive electrode in various devices.

Structural Properties of MO-SiO$_2$(M=Zn, Sn, In, Ag, Ni) by Sol-Gel Method (졸겔법으로 제조된 MO-$SiO_2$(M=Zn,Sn,In,Ag,Ni)의 구조특성)

  • Sin, Yong-Uk;Kim, Sang-U
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.603-608
    • /
    • 2001
  • $MO-SiO_2$ (M = Zn, Sn, In, Ag, Ni) binary silica gels were synthesized by sol-gel method and their structural change with the kind of metal ions was characterized by XRD, FT- IR and $^{29}$Si-NMR. Although X-ray analysis showed partial recrystallization of $AgNO_3$ in $Ag-SiO_2$gel, crystalline phase formed by the bonding between metal ion and the silica matrix didn't appear in all $MO-SiO_2$ gels. The FT-IR analysis showed that Zn, Sn and in partially formed Si-O-M bonding in silica matrix and made an shift of absorption peak to by Si-O-Si symmetrical vibration. In addition, $^{29}Si-NMR$ studies showed that Zn, Sn and In didn't affect sol-gel process of silica and were linked with non-bridging oxygen of the linear silica structure, which formed imperfect network because of low temperature sol-gel process. Ag and Ni make a role of catalysis on sol-gel process, resulting in densifying the silica network structure.

  • PDF

Evolution of Interfacial Microstructure in Alumina and Ag-Cu-Zr-Sn Brazing Alloy (알루미나/Ag-Cu-Zr-Sn 브레이징 합금계면의 미세조직)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.481-488
    • /
    • 1998
  • The active metal brazing was applied to bond Alumina and Ni-Cr steel by Ag-Cu-Zr-Sn alloy and the interfacial microstructure and reaction mechanism were investigated. Polycrystalline monoclinic $ZrO_2$ with a very fine grain of 100-150 nm formed at the alumina grain boundary contacted with Zr segregation layer at the interface. The $ZrO_2$ layer containing the inclusions and cracks were developed at the boundary of inclusion/$ZrO_2$ due to the difference in specific volume. The development of $ZrO_2$ at the interface was successfully explained by the preferential penetration of $ZrO_2$ at the interface was successfully explained by the preferential penetration of Zr atoms a higher concentration of oxygen and a high diffusion rate of Al ions into molten brazing alloy.

  • PDF

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

Facile Synthesis, Characterization and Photocatalytic Activity of MWCNT-Supported Metal Sulfide Composites under Visible Light Irradiation

  • Zhu, Lei;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • This paper reported a simple deposition-precipitation method, introducing the metal (Ni, Ag and Sn) and $Na_2S{\cdot}5H_2O$ to preparedispersion metal sulfide nanoparticles on the surface of the Multi-walled carbon nanotube for synthesis of CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composite photocatalysts. The characterization of the prepared CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composites was performed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis and BET analysis. Furthermore, the MB degradation rate constant for CNT-SnS composite was $5.68{\times}10^{-3}$ under visible light irradiation, which was much higher than the corresponding values for other samples. The detailed formation and photocatalytic mechanism are also provided here.

Effects of Surface Finishes on the Low Cycle Fatigue Characteristics of Sn-based Pb-free Solder Joints (금속패드가 Sn계 무연솔더의 저주기 피로저항성에 미치는 영향)

  • Lee, Kyu-O;Yoo, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2003
  • Surface finishes of PCB laminates are important in the solder joint reliability of flip chip package because the types and thicknesses of intermetallic compound(IMC), and compositions and hardness of solders are affected by them. In this study, effects of surface finishes of PCB on the low cycle fatigue resistance of Sn-based lead-free solders; Sn-3.5Ag, Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag-XBi(X=2.5, 7.5) and Sn-0.7Cu were investigated for the Cu and Au/Ni surface finish treatments. Displacement controlled room temperature lap shear fatigue tests showed that fatigue resistance of Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag and Sn-0.7Cu alloys were more or less the same each other but much better than that of Bi containing alloys regardless of the surface finish layer used. In general, solder joints on the Au/Ni finish showed better fatigue resistance than those on the Cu finish. Cross-sectional fractography revealed microcracks nucleation inside of the interfacial IMC near the solder mask edge, more frequently on the Cu than the Au/Ni surface finish. Macro cracks followed the solder/IMC interface in the Bi containing alloys, while they propagated in the solder matrix in other alloys. It was ascribed to the Bi segregation at the solder/IMC interface and the solid solution hardening effect of Bi in the $\beta-Sn$ matrix.

  • PDF

Catalytic synthesis and properties of β-Ga2O3 nanowires by metal organic chemical vapor deposition (MOCVD를 이용한 금속 촉매 종류에 따른 β-Ga2O3 나노 와이어의 제작과 특성)

  • Lee, Seunghyun;Lee, Seoyoung;Jeong, Yongho;Lee, Hyojong;Ahn, Hyungsoo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Catalytic synthesis and properties of ${\beta}-Ga_2O_3$ nanowires grown by metal organic chemical vapor deposition are reported. Au, Ni and Cu catalysts were suitable for the growth of $Ga_2O_3$ nanowires under our experimental conditions. The $Ga_2O_3$ nanowires grown by using Au, Ni and Cu catalysts showed different growth rates and morphologies in each case. We found the $Ga_2O_3$ nanowires were grown by the Vapor-Solid (VS) process when Ni was used as a catalyst while the Vapor-Liquid-Solid (VLS) was a dominant process in case of Au and Cu catalysts. Also, we found nanowires showed different optical properties depend on catalytic metals. On the other hand, for the cases of Ti, Sn and Ag catalysts, nanowires could not be obtained under the same condition of Au, Cu and Ni catalytic synthesis. We found that these results are related to the different characteristics of each catalyst, such as, melting points and phase diagrams with gallium metal.

Element Dispersion by the Wallrock Alteration of Daehyun Gold-silver Deposit (대현 금-은광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.199-206
    • /
    • 2013
  • The Daehyun gold-silver deposit consists of two hydrothermal quartz veins that fill NE-trending fractures in the Cambro-Ordovician calcitic marble. I have sampled wallrock, hydrothermaly-altered rock and gold-silver ore vein to study the element dispersion and element gain/loss during wallrock alteration. The hydrothermal alteration doesn't remarkably recognized at this deposit and consists of mainly calcite, dolomite, quartz and minor epidote. The ore minerals composed of arsenopyrite, pyrrhotite, pyrite, sphalerite, stannite, chalcopyrite, galena, electrum, native bismuth and silver-bearing mineral. Based on analyzed data, the chemical composition of wallrock consists of mainly $SiO_2$, CaO, $CO_2$ with amounts of $Al_2O_3$, $Fe_2O_3(T)$ and MgO. The contents of $SiO_2$, $Fe_2O_3(T)$, MgO, CaO and $CO_2$ vary significantly with distance from ore vein. The element dispersion doesn't remarkably recognized during wallrock alteration and only occurs near the ore vein margin because of physical and chemical properties of wallrock. Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, total S, Ag, As, Bi, Cd, Cu, Ni, Pb, Sb, Sn, W and Zn. Remarkable loss elements are $SiO_2$, MnO, MgO, CaO. $CO_2$ and Sr. Therefore, Our result may be used when geochemical exploration carry out at deposits hosted calcitic marble in the Hwanggangri metallogenic district.

Selective Leaching Process of Precious Metals (Au, Ag, etc.) from Waste Printed Circuit Boards (PCBs) (廢 PCBs부터 귀금속(Au, Ag 등)의 선택적 침출공정)

  • 오치정;이성오;국남표;김주환;김명준
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.29-35
    • /
    • 2001
  • This study was carried out to recover gold, silver and valuable metals from the printed circuit boards (PCBs) of waste computers. PCBs samples were crushed under 1 mm by a shredder and separated into 30% conducting and loft nonconducting materials by an electrostatic separator. The conducting materials contained valuable metals which were then used as feed materials for magnetic separation. 42% of magnetic materials from the conducting materials was removed by magnetic separation as nonvaluable materials and the others, 58% of non magnetic materials, was used as leaching samples containing 0.227 mg/g Au and 0.697 mg/g Ag. Using the materials of leaching from magnetic separation, more than 95% of copper, iron, zinc, nickel and aluminium was dissolved in 2.0M sulfuric acid solution, added with 0.2M hydrogen peroxide at $85^{\circ}C$. Au and Ag were not extracted in this solution. On the other hand, more than 95% of gold and 100% of silver were leached by the selective leaching with a mixed solvent (0.2M($NH_4$)$_2$$S_2$$O_3$,0.02M $CuSO_4$,0.4M $NH_4$OH). Finally, the residues were reacted with a NaCl solution to leach Pb whereas sulfuric acid was used to leach Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

Shearing Characteristics of Sn3.0AgO.5Cu Solder Ball for Standardization of High Speed Shear Test (고속전단시험의 표준화를 위한 Sn3.0Ag0.5Cu 솔더볼의 전단특성)

  • Jung, Do-Hyun;Lee, Young-Gon;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • Shearing characteristics of Sn-3.0wt%Ag-0.5wt%Cu ball for standardization of high speed shear test were investigated. The solder ball of 450 ${\mu}m$ in diameter was reflowed at $245^{\circ}C$ on FR4 PCB (Printed Circuit Board) to prepare a sample for the high-speed shear test. The metal pads on the PCB were OSP (Organic Solderability Preservative, Cu pad) and ENIG (Electroless Nickel/Immersion Gold, i.e CulNi/Au). Shearing speed was varied from 0.5 to 3.0 m/s, and tip height from 10 to 135 ${\mu}m$. As experimental results, for the OSP pad, a ductile fracture increased with tip height, and it decreased with shearing speed. In the case of ENIG pad, the ductile fracture increased with the tip height. The tip height of 10 ${\mu}m$ (2% of solder ball diameter) was unsuitable since the fracture mode was mostly pad lift. Shear energy increased with increasing shearing tip height from 10 to 135 ${\mu}m$ for both of OSP and ENIG pads.