DOI QR코드

DOI QR Code

3차원 원자단층현미경을 활용한 기능성 재료의 구조-특성 관계 해석

Understanding the Structure-Property Relationship in Functional Materials Using 3D Atom Probe Tomography

  • 정찬원 (부경대학교 재료공학과)
  • Chanwon Jung (Department of Materials Science and Engineering, Pukyong National University)
  • 투고 : 2024.07.05
  • 심사 : 2024.07.22
  • 발행 : 2024.09.01

초록

Understanding the structure-property relationship in functional materials is crucial as microstructural features such as nano-precipitates, phase boundary, grain boundary segregation, and grain boundary phases play a key role in their functional properties. Atom probe tomography (APT) is an advanced analytical technique that allows for the three-dimensional (3D) mapping of atomic distributions and the precise determination of local chemical compositions in materials. Moreover, it offers sub-nanometer spatial resolution and chemical sensitivity at the tens of parts per million (ppm) level. Owing to its unique capabilities, this technique has been employed to uncover the 3D elemental distributions in a wide range of materials, including alloys, semiconductors, nanomaterials, and even biomaterials. In this paper, various kinds of examples are introduced for elucidating structure-property relationships on functional materials by utilizing the atom probe tomography.

키워드

과제정보

이 논문은 국립부경대학교 자율창의학술연구비(2024년)에 의하여 연구되었음.

참고문헌

  1. W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering (Wiley, London, 2000) p. 960.
  2. Y. Mim, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 419 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.5.1
  3. B. Gault, A. Chiaramonti, O. Cojocaru-Miredin, P. Stender, R. Dubosq, C. Freysoldt, S. K. Makineni, T. Li, M. Moody, and J. M. Cairney, Nat. Rev. Methods Primers, 1, 51 (2021). doi: https://doi.org/10.1038/s43586-021-00047-w
  4. S. D. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 326 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.4.2
  5. B. Gault, M. P. Moody, J. M. Cairney, and S. P. Ringer, Atom Probe Microscopy (Springer Science & Business Media, Springer New York, NY, 2012) p. 3. doi: https://doi.org/10.1007/978-1-4614-3436-8_1
  6. H. Gopalan, J. Rao, P. Patil, C. Jung, S. H. Kim, S. Goodrich, M. Wetegrove, A. Kruth, C. Scheu, G. Dehm, and M. J. Duarte, J. Mater. Res., 39, 1812 (2024). doi: https://doi.org/10.1557/s43578-024-01348-y
  7. K. Kim, C. Jung, K. Yim, I. Jeong, D. Shin, I. Hwang, S. Song, S. K. Ahn, Y. J. Eo, A. Cho, J. S. Cho, J. H. Park, P. P. Choi, J. H. Yun, and J. Gwak, ACS Appl. Mater. Interfaces, 14, 52825 (2022). doi: https://doi.org/10.1021/acsami.2c14321
  8. K. Jang, W. S. Ko, J. H. Son, J. I. Jang, B. Kim, M. Vega- Parades, H. Jang, M. Allahyari, S. H. Kim, K. H. Ryou, D. Chae, H. Park, Y. S. Jung, M. W. Oh, C. Jung, C. Scheu, and P. P. Choi, Adv. Funct. Mater., 2403785 (2024). doi: https://doi.org/10.1002/adfm.202403785
  9. C. H. Jung, C. Jung, J. Lee, J. Oh, H. Shim, W. S. Kim, E. Lee, M. Kim, P. P. Choi, and S. H. Hong, J. Mater. Chem. A, 10, 13735 (2022). doi: https://doi.org/10.1039/d2ta00538g
  10. L. S. Aota, C. Jung, S. Zhang, S. H. Kim, and B. Gault, ACS Energy Lett., 8, 2824 (2023). doi: https://doi.org/10.1021/acsenergylett.3c00911
  11. S. H. Kim, H. Jun, K. Jang, P. P. Choi, B. Gault, and C. Jung, J. Phys. Chem. C, 127, 22721 (2023). doi: https://doi.org/10.1021/acs.jpcc.3c05016
  12. T. F. Kelly and M. K. Miller, Rev. Sci. Instrum., 78, 031101 (2007). doi: https://doi.org/10.1063/1.2709758
  13. I. Blum, F. Cuvilly, and W. Lefebvre-Ulrikson, Atom Probe Tomography (Academic Press, 2016) p. 97. doi: https://doi.org/10.1016/B978-0-12-804647-0.00004-8
  14. M. K. Miller and K. F. Russell, Ultramicroscopy, 107, 761 (2007). doi: https://doi.org/10.1016/j.ultramic.2007.02.023
  15. Y. Zhang, T. T. Zuo, Y. Q. Cheng, and P. K. Liaw, Sci. Rep., 3, 1455 (2013). doi: https://doi.org/10.1038/srep01455
  16. C. Jung, K. Kang, A. Marshal, K. G. Pradeep, J. B. Seol, H. M. Lee, and P. P. Choi, Acta Mater., 171, 31 (2019). doi: https://doi.org/10.1016/j.actamat.2019.04.007
  17. T. Zuo, M. C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P. K. Liaw, J. A. Hawk, and Y. Zhang, Acta Mater., 130, 10 (2017). doi: https://doi.org/10.1016/j.actamat.2017.03.013
  18. Y. F. Kao, S. K. Chen, T. J. Chen, P. C. Chu, J. W. Yeh, and S. J. Lin, J. Alloys Compd., 509, 1607 (2011). doi: https://doi.org/10.1016/j.jallcom.2010.10.210
  19. A. Brognara, A. Kashiwar, C. Jung, X. Zhang, A. Ahmadian, N. Gauquelin, J. Verbeeck, P. Djemia, D. Faurie, G. Dehm, H. Idrissi, J. P. Best, and M. Ghidelli, Small Struct., 2400011 (2024). doi: https://doi.org/10.1002/sstr.202400011
  20. G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008). doi: https://doi.org/10.1038/nmat2090
  21. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci., 2, 466 (2009). doi: https://doi.org/10.1039/b822664b
  22. J. M. Park, S. Kim, Y. Na, and K. I. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 119 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.2.2
  23. D. Park and J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 203 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.3.1
  24. J. Yu, C. Fu, Y. Liu, K. Xia, U. Aydemir, T. C. Chasapis, G. J. Snyder, X. Zhao, and T. Zhu, Adv. Energy Mater., 8, 1701313 (2018). doi: https://doi.org/10.1002/aenm.201701313
  25. H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu, Z. Tang, A. Sotnikov, Z. Wang, D. Broido, D. J. Singh, G. Chen, K. Nielsch, and Z. Ren, Nat. Commun., 9, 2497 (2018). doi: https://doi.org/10.1038/s41467-018-04958-3
  26. C. Jung, S. J. Jeon, S. Lee, H. Park, S. Han, J. Oh, S. H. Yi, and P. P. Choi, J. Alloys Compd., 962, 171191 (2023). doi: https://doi.org/10.1016/j.jallcom.2023.171191
  27. C. Jung, B. Dutta, P. Dey, S. J. Jeon, S. Han, H. M. Lee, J. S. Park, S. H. Yi, and P. P. Choi, Nano Energy, 80, 105518 (2021). doi: https://doi.org/10.1016/j.nanoen.2020.105518
  28. C. Jung, S. Zhang, K. Jang, N. Cheng, C. Scheu, S. H. Yi, and P. P. Choi, ACS Appl. Mater. Interfaces, 15, 46064 (2023). doi: https://doi.org/10.1021/acsami.3c10298
  29. C. Jung, K. Jang, H. Park, J. Jang, H. Jang, B. Kang, K. Park, S. Zhang, R. B. Villoro, S. D. Park, H. J. Ryu, Y. S. Jung, M. W. Oh, C. Scheu, S. H. Yi, and P. P. Choi, J. Mater. Sci. Technol., 165, 39 (2023). doi: https://doi.org/10.1016/j.jmst.2023.04.037
  30. O. C. Hellman and D. N. Seidman, Mater. Sci. Eng., A, 327, 24 (2002). doi: https://doi.org/10.1016/S0921-5093(01)01885-8
  31. R. B. Villoro, D. Zavanelli, C. Jung, D. A. Mattlat, R. H. Naderloo, N. Perez, K. Nielsch, G. J. Snyder, C. Scheu, R. He, and S. Zhang, Adv. Energy Mater., 13, 2204321 (2023). doi: https://doi.org/10.1002/aenm.202204321
  32. C. L. Moon, J. W. Bae, and S. M. Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 164 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.2.9
  33. C. Jung, H. Jun, K. Jang, S. H. Kim, and P. P. Choi, Microsc. Microanal., 28, 1841 (2022). doi: https://doi.org/10.1017/S1431927622012211
  34. J. Lim, C. Jung, D. Hong, J. Bak, J. Shin, M. J. Kim, D. H. Song, C. Lee, J. Lim, H. Lee, H. M. Lee, and E. A. Cho, J. Mater. Chem. A, 10, 7399 (2022). doi: https://doi.org/10.1039/D2TA00127F