• Title/Summary/Keyword: Nano-precipitates

Search Result 43, Processing Time 0.025 seconds

Evaluation of radiation resistance of an austenitic stainless steel with nanosized carbide precipitates using heavy ion irradiation at 200 dpa

  • Ji Ho Shin ;Byeong Seo Kong;Chaewon Jeong;Hyun Joon Eom;Changheui Jang;Lin Shao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.555-565
    • /
    • 2023
  • Despite many advantages as structural materials, austenitic stainless steels (SSs) have been avoided in many next generation nuclear systems due to poor void swelling resistance. In this paper, we report the results of heavy ion irradiation to the recently developed advanced radiation resistant austenitic SS (ARES-6P) with nanosized NbC precipitates. Heavy ion irradiation was performed at high temperatures (500 ℃ and 575 ℃) to the damage level of ~200 displacement per atom (dpa). The measured void swelling of ARES-6P was 2-3%, which was considerably less compared to commercial 316 SS and comparable to ferritic martensitic steels. In addition, increment of hardness measured by nano-indentation was much smaller for ARES-6P compared to 316 SS. Though some nanosized NbC precipitates were dissociated under relatively high dose rate (~5.0 × 10-4 dpa/s), sufficient number of NbC precipitates remained to act as sink sites for the point defects, resulting in such superior radiation resistance.

Microstructure of Cu-Ag Filamentary Nanocomposite Wires Annealed at Different Temperatures (어닐링한 Cu-Ag 나노복합재 와이어의 미세조직)

  • Kwak, Ho Yeon;Hong, Sun Ig;Lee, Kap Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.995-1000
    • /
    • 2011
  • The microstructure of Cu-24 wt.%Ag filamentary nanocomposite fabricated by a thermo-mechanical process has been investigated by transmission electron microscopy (TEM) observations. This study is focused on the stability of Ag filaments formed by cold drawing; the effects of thermal treatment on the precipitation behavior and distribution of Ag-rich precipitates were also investigated. The Ag filaments elongated along the <111> orientation were observed in Cu-rich ${\alpha}$ phase of the as-drawn specimen and the copper matrix and the silver filament have a cube on cube orientation relationship. Annealing at temperatures lower than $200^{\circ}C$ for the as-drawn specimen caused insignificant change of the fibrous morphology but squiggly interfaces or local breaking of the elongated Ag filaments were easily observed with annealing at $300^{\circ}C$. When samples were annealed at $400^{\circ}C$, discontinuous precipitation was observed in supersaturated Cu solid solution. Ag precipitates with a thickness of 7-20 nm were observed along the <112> direction and the orientation relationship between the copper matrix and the Ag precipitates maintained the same orientation relationship in the as-drawn specimen. The interface between the copper matrix and the Ag precipitates is parallel to {111} and micro-twins were observed in the Ag precipitates.

Atomic-resolution Transmission Electron Microscopy Investigation of η2 Precipitate Growth in Al-Zn-Mg Alloy (원자단위 투과전자현미경을 활용한 알루미늄-아연-마그네슘 합금 내부 η2 석출물 성장 메커니즘 규명)

  • H. Kim;H. N. Han
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.12-17
    • /
    • 2024
  • Aluminum-zinc-magnesium alloy is a well-known alloy that is both strong and lightweight. Precipitation strengthening plays a significant role in the strength mechanism of this alloy, with nano-sized η-based precipitates being the representative precipitates. However, the growth of η precipitates can lead to a decrease in strength, necessitating research into ways to control their growth. In this study, we observed the atomic-level behavior of η2 precipitates and discovered that the precipitates grew through a combination with magnesium after a zinc segregation layer was formed around them.

Understanding the Structure-Property Relationship in Functional Materials Using 3D Atom Probe Tomography (3차원 원자단층현미경을 활용한 기능성 재료의 구조-특성 관계 해석)

  • Chanwon Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.476-485
    • /
    • 2024
  • Understanding the structure-property relationship in functional materials is crucial as microstructural features such as nano-precipitates, phase boundary, grain boundary segregation, and grain boundary phases play a key role in their functional properties. Atom probe tomography (APT) is an advanced analytical technique that allows for the three-dimensional (3D) mapping of atomic distributions and the precise determination of local chemical compositions in materials. Moreover, it offers sub-nanometer spatial resolution and chemical sensitivity at the tens of parts per million (ppm) level. Owing to its unique capabilities, this technique has been employed to uncover the 3D elemental distributions in a wide range of materials, including alloys, semiconductors, nanomaterials, and even biomaterials. In this paper, various kinds of examples are introduced for elucidating structure-property relationships on functional materials by utilizing the atom probe tomography.

A Precipitation Behavior of Nano-Oxide Particles in Mechanically Alloyed Fe-5Y2O3 Powders (기계적 합금화하여 제조한 Fe-5Y2O3 합금분말의 나노산화물 석출거동)

  • Kim, Ga Eon;Noh, Sanghoon;Choi, Ji Eun;Kim, Young Do;Kim, Tae Kyu
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • A precipitation behavior of nano-oxide particle in Fe-$5Y_2O_3$ alloy powders is studied. The mechanically alloyed Fe-$5Y_2O_3$ powders are pressed at $750^{\circ}C$ for 1h, $850^{\circ}C$ for 1h and $1150^{\circ}C$ for 1h, respectively. The results of Xray diffraction pattern analysis indicate that the $Y_2O_3$ diffraction peak disappear after mechanically alloying process, but $Y_2O_3$ and $YFe_2O_4$ complex oxide precipitates peak are observed in the powders pressed at $1150^{\circ}C$. The differential scanning calorimetry study results reveal that the formation of precipitates occur at around $1054^{\circ}C$. Based on the transmission electron microscopy analysis result, the oxide particles with a composition of Y-Fe-O are found in the Fe-$5Y_2O_3$ alloy powders pressed at 1150oC. It is thus conclude that the mechanically alloyed Fe-$5Y_2O_3$ powders have no precipitates and the oxide particles in the powders are formed by a high temperature heat-treatment.

Phase Change of Precipitates and Age Hardening in Rapidly Solidified Mg-Zn-Ca Base Alloys

  • Park Won-Wook;You Bong-Sun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.303-308
    • /
    • 2005
  • Various kinds of Mg-Zn-Ca base alloys were rapidly quenched via melt spinning process. The meltspun ternary and quaternary alloy ribbons were heat-treated, and then the effects of additional elements on age hardening behavior and phase change of precipitates were investigated using Vickers hardness tester, XRD, and TEM equipped with EDS system. In ternary alloys, age hardening was mostly due to the distribution of $Mg_6Ca_2Zn_3$ and $Mg_2Ca$. The stable phases of precipitates were varied according to the aging temperature and the alloy composition. With the increase of Ca content, $Mg_2Ca$ precipitates were detected more than $Mg_6Ca_2Zn_3$ precipitates. In quaternary alloys, the precipitates taken from Mg-Zn-Ca-Co were identified as new quaternary phase, whereas those taken from Mg-Zn-Ca-Zr as MgZnCa containing Zr. In general, the ternary alloy showed higher peak hardness and thermal stability than the quaternary considering the total amounts of the solutes. It implies that the structure of precipitate should be controlled to have the coherent interface with the Mg matrix.

Formation of the precipitates in the Bi-2223/Ag superconducting tapes by post-heat treatment (Bi-2223 초전도 선재의 후열처리 과정에 의한 석출물의 형성)

  • Lee, Sang-Hee;Kim, Cheol-Jin;Chung, Jun-Ki;Yoo, Jae-Moo;Ko, Jae-Woong
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.262-267
    • /
    • 2000
  • To tap the possibility of exploiting the precipitates as flux-pinning center in the Bi-2223 superconducting system, as-received Bi-2223/Ag tapes with the starting composition of Bi$_{1.8}$Pb$_{0.4}$Sr$_2$Ca$_{2.2}$Cu$_3$O$_8$ were post-annealed at various temperature, oxygen partial pressure, and annealing time. The 2$^{nd}$ phases in the annealed specimen were analysed with XRD, SEM, TEM, and EDS. The size and the distribution of the precipitates such as (Ca,Sr)$_2$(Pb,Bi)O$_4$ and Bi$_{0.5}$Pb$_3$Sr$_2$Ca$_2$CuO$_{12+{\delta}}$ (3221) in the Bi-2223 matrix was controllable by varying heat-treatment condition without breaking the connectivity of the 2223 grains. The nano-size precipitates within the 2223 grains are conjectured as working as flux-pinning sites, resulting in increased J$_c$ value.

  • PDF

Microstructural Evolution of Grade 91 Steel upon Heating at 760~1000℃

  • He, Yinsheng;Chang, Jungchel;Lee, Je-Hyun;Shin, Keesam
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.607-611
    • /
    • 2015
  • The microstructural evolution of Grade 91 tempered martensite ferritic steels heat treated at $760{\sim}1000^{\circ}C$ for two hours was investigated using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), electron backscattered diffraction (EBSD), and transmission electron microscopy(TEM); a microhardness tester was also employed, with a focus on the grain and precipitate evolution process as well as on the main hardening element. It was found that an evolution of tempered martensite to ferrite($760{\sim}850^{\circ}C$), and to fresh martensite($900{\sim}1000^{\circ}C$), occurred with the increase of temperature. Simultaneously, the parabolic evolution characteristics of the low angle grain boundary(LAGB) increased with the increase of the heating temperature(highest fraction of LAGB at $925^{\circ}C$), indicating grain recovery upon intercritical heating. The main precipitate, $M_{23}C_6$, was found to be coarsened slightly at $760{\sim}850^{\circ}C$; it then dissolved at $850{\sim}1000^{\circ}C$. Besides this, $M_3C$ cementite was formed at $900{\sim}1000^{\circ}C$. Finally, the experimental results show that the hardness of the steel depended largely on the matrix structure, rather than on the precipitates, with the fresh martensite showing the highest hardness value.

Harvesting of Oleaginous Microalgae Chlorella sp. by CaCO3 Mineralization

  • Kim, Dong Hyun;Oh, You-Kwan;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.386-391
    • /
    • 2021
  • The formation of CaCO3 in microalgal culture is investigated and applied for effective separation of microalgae. The presence of several cationic ions in the culture medium mediates the formation of 3 types of mineral precipitates depending on the concentration of mineral precursors, Ca2+ and CO32-, amorphous nano-flakes, rhombohedral calcites, and spherical vaterites. While amorphous phased precipitates are formed for all concentrations of mineral precursor, only calcites are formed for 30 mM solutions of mineral precursor, and mixtures of calcites and vaterites are formed for 50 and 100 mM solutions of mineral precursor. The harvesting efficiency is also dependent on the concentration of the mineral precursor: from 90 % for 10 mM to 99 % for 100 mM after 60 mins' of gravitational sedimentation. The formation of nano-flakes on the surface of microalgal cells induces the flocculation of microalgae by breaking the stable dispersion. The negatively charged surface of the microalgal cell is compatible not only with nano-flake attachment but also with the growth of calcitic crystals in which microalgal cells are embedded.

Two-Phase Magnet in the Co/Co2MnSn System

  • Kim, Tae-Wan;Yim, Hye-In;Lee, Hyun-Yong;Lee, Kyoung-Il
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • This study reports on Co/$Co_2$MnSn two-phase magnets. The Co/$Co_2$MnSn two-phase magnet has Co precipitates in a $Co_2MnSn$ Heusler alloy matrix, in which the two phases are exchange-coupled at the phase boundary. The as-casted Co/$Co_2$MnSn system, which has Co-Mn solid solution precipitates in a $Co_2$MnSn Heusler alloy matrix, showed that the Co solid solution precipitates are crystallographically coherent and there is exchange coupling at the phase boundary. To form pure Co precipitates by removal of Mn solute atoms in Co-Mn solid solution, annealing was carried out 48 hours at $870^{\circ}C$. After annealing, the low $T_c$ and low magnetization phase of the Co-Mn solid solution became a high $T_c$ and high magnetization phase of hexagonal Co.