DOI QR코드

DOI QR Code

The influence of Ni ion addition on the microstructure and gamma ray shielding ability of ferromagnetic CuFe2O4 ceramic material

  • Mohammad W. Marashdeh (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Fawzy H. Sallam (Nuclear Materials Authority) ;
  • Ahmed M. Abd El-Aziz (Ultrasonic Laboratory, National Institute of Standards) ;
  • Mohamed I. Elkhatib (Basic Science Department, Higher Institute of Engineering and Technology) ;
  • Sitah f. Alanazi (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Mamduh J. Aljaafreh (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Mohannad Al-Hmoud (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • K.A. Mahmoud (Nuclear Materials Authority)
  • Received : 2024.01.05
  • Accepted : 2024.02.18
  • Published : 2024.07.25

Abstract

The sintering process acquired ferromagnetic copper ferrite ceramic material with a small concentration of Ni ion at 1100 ℃ for 1 h. Previously, copper ferrite with Ni proportions powder was acquired by the wet chemical process according to the relation CuFe2-xNixO4 where x takes values 0.0, 0.015, 0.03, 0.04, and 0.05. The role of Ni ion in the copper ferrite structure was investigated by X-ray analysis, Scanning electron microscope, EDX analysis, and density measurements. The gamma-ray shielding properties for the fabricated CuFeNiO ceramics samples were evaluated using the Monte Carlo simulation method. The obtained results show an enhancement in the linear attenuation coefficient for the fabricated ceramics with increasing the insertions of Ni ions within the fabricated samples, where increasing the Ni ions concentration between 0 and 1.19 wt% increases the linear attenuation by between 1.581 and 1.771 cm-1 (at 0.103 MeV), 0.304-0.338 cm-1 (at 0.662 MeV), and 0.160-0.178 cm-1 (at 2.506 MeV), respectively. Simultaneously, the radiation protection efficiency for a 1 cm thickness of the fabricated samples increased between 14.8 and 16.3% with increasing the Ni ions between 0 and 1.19 wt%. Although the Ni doping concentration does not exceed 1.5 wt% of the total composition of the fabricated ceramics, the shielding capacity of the fabricated ceramics was enhanced by more than 11%, along the studied energy interval. Therefore, the fabricated samples can be used in gamma-ray shielding applications.

Keywords

Acknowledgement

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23093).

References

  1. J. Le Heron, R. Padovani, I. Smith, R. Czarwinski, Radiation protection of medical staff, Eur. J. Radiol. 76 (2010) 20-23, https://doi.org/10.1016/j.ejrad.2010.06.034.
  2. National Research Council, Health risks from exposure to low levels of ionizing radiation, BEIR VII phase 2 (2006).
  3. K. El-Egili, H. Doweidar, Y.M. Moustafa, I. Abbas, Structure and some physical properties of PbO-P2O5 glasses, Phys. B Condens. Matter 339 (2003) 237-245, https://doi.org/10.1016/j.physb.2003.07.005.
  4. G. Sharma, K. Singh, Manupriya, S. Mohan, H. Singh, S. Bindra, Effects of gamma irradiation on optical and structural properties of PbO-Bi2O3-B2O3 glasses, Radiat. Phys. Chem. 75 (2006) 959-966, https://doi.org/10.1016/j.radphyschem.2006.02.008.
  5. H. Ozan Tekin, M.I. Sayyed, T. Manici, E.E. Altunsoy, Photon shielding characterizations of bismuth modified borate -silicate-tellurite glasses using MCNPX Monte Carlo code, Mater. Chem. Phys. 211 (2018) 9-16, https://doi.org/10.1016/j.matchemphys.2018.02.009.
  6. S.F. Olukotun, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, H.O. Shittu, M.K. Fasasi, F. A. Balogun, Investigation of gamma radiation shielding capability of two clay materials, Nucl. Eng. Technol. 50 (2018) 957-962, https://doi.org/10.1016/j.net.2018.05.003.
  7. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.C. Ersundu, A.E. Ersundu, I. V Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses, Radiat. Phys. Chem. 145 (2018) 26-33, https://doi.org/10.1016/j.radphyschem.2017.12.010.
  8. M.U. Khandaker, D.A. Bradley, H. Osman, M.I. Sayyed, A. Sulieman, M.R. I. Faruque, K.A. Naseer, A.M. Idris, The significance of nuclear data in the production of radionuclides for theranostic/therapeutic applications, Radiat. Phys. Chem. 200 (2022) 110342, https://doi.org/10.1016/j.radphyschem.2022.110342.
  9. S.F. Olukotun, S.T. Gbenu, O.F. Oladejo, M.I. Sayyed, S.M. Tajudin, A.A. Amosun, O.G. Fadodun, M.K. Fasasi, Investigation of gamma ray shielding capability of fabricated clay-polyethylene composites using EGS5, XCOM and Phy-X/PSD, Radiat. Phys. Chem. 177 (2020) 109079, https://doi.org/10.1016/j.radphyschem.2020.109079.
  10. S.F. Olukotun, K.S. Mann, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, A. Joshi, H. O. Tekin, M.I. Sayyed, M.K. Fasasi, F.A. Balogun, T. Korkut, Neutron-shielding behaviour investigations of some clay-materials, Nucl. Eng. Technol. 51 (2019) 1444-1450, https://doi.org/10.1016/j.net.2019.03.019.
  11. S.F. Olukotun, M.I. Sayyed, O.F. Oladejo, N. Almousa, S.A. Adeojo, E.O. Ajoge, S. T. Gbenu, M.K. Fasasi, Computation of gamma buildup factors and heavy ions penetrating depths in clay composite materials using phy-X/PSD, EXABCal and SRIM Codes, Coatings 12 (2022) 1512, https://doi.org/10.3390/coatings12101512.
  12. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gammaray shielding and elastic properties of BaO-Bi2O3-B2O3 and ZnO-Bi2O3-B2O3 glass systems, Mater. Chem. Phys. 217 (2018) 11-22, https://doi.org/10.1016/j.matchemphys.2018.06.034.
  13. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems, Compos. B Eng. 165 (2019) 636-647, https://doi.org/10.1016/j.compositesb.2019.02.022.
  14. A. Abd Alkareem Tamara, S.A. Hassan, S.M. Abdalhadi, Natural products and medical chemistry breast cancer: symptoms, causes, and treatment by metal complexes: a review, Advanced Journal of Chemistry-Section B 5 (2023) 306-319, https://doi.org/10.48309/ajcb.2023.398122.1174.
  15. F. Ahmad, M. Mehmood, A critical review of photocatalytic degradation of organophosphorus pesticide "parathion" by different mixed metal oxides, Advanced Journal of Chemistry, Section A 5 (2022) 287-310, https://doi.org/10.22034/ajca.2022.357664.1324.
  16. M.K.K. Poojha, K.A. Naseer, H. Al-Ghamdi, A.H. Almuqrin, M.I. Sayyed, K. Marimuthu, A complete analysis of the structural, optical, and gamma-ray attenuation of Dy3+ doped modifiers dependent Lead phosphate boro-tellurite glasses, Optik 264 (2022) 169433, https://doi.org/10.1016/j.ijleo.2022.169433.
  17. H.A. Thabit, A.K. Ismail, S. Hashim, M.I. Sayyed, K.A. Naseer, S.A. Bassam, Designing high-density of PbO-enriched telluro-borate glasses for improved radiation shielding: a comprehensive study of attenuation parameters, ECS Journal of Solid State Science and Technology 12 (2023) 113002, https://doi.org/10.1149/2162-8777/ad06e5.
  18. T. Ayode Otitoju, P. Ugochukwu Okoye, G. Chen, Y. Li, M. Onyeka Okoye, S. Li, Advanced ceramic components: materials, fabrication, and applications, J. Ind. Eng. Chem. 85 (2020) 34-65, https://doi.org/10.1016/j.jiec.2020.02.002.
  19. B. Oto, E. Kavaz, H. Durak, A. Aras, Z. Madak, Effect of addition of molybdenum on photon and fast neutron radiation shielding properties in ceramics, Ceram. Int. 45 (2019) 23681-23689, https://doi.org/10.1016/j.ceramint.2019.08.082.
  20. A.A. Jawad, N. Demirkol, K. Gunoglu, ˘ I. Akkurt, Radiation shielding properties of some ceramic wasted samples, Int. J. Environ. Sci. Technol. 16 (2019) 5039-5042, https://doi.org/10.1007/s13762-019-02240-7.
  21. F. Akman, Z.Y. Khattari, M.R. Kacal, M.I. Sayyed, F. Afaneh, The radiation shielding features for some silicide, boride and oxide types ceramics, Radiat. Phys. Chem. 160 (2019) 9-14, https://doi.org/10.1016/j.radphyschem.2019.03.001.
  22. E. Hannachi, M.I. Sayyed, Y. Slimani, M. Elsafi, Experimental study of yttriumbased ceramic systems containing nanomaterials for gamma radiation protecting applications, Appl. Phys. A 128 (2022) 859, https://doi.org/10.1007/s00339-022-05996-x.
  23. E. Hannachi, M.I. Sayyed, K.A. Mahmoud, Y. Slimani, Correlation between the structure, grain size distribution and radiation shielding peculiarities of YBCO ceramics prepared by two different milling methods, Appl. Phys. Mater. Sci. Process 128 (2022), https://doi.org/10.1007/s00339-022-05946-7.
  24. M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources, Adv. Powder Technol. 23 (2012) 315-323, https://doi.org/10.1016/j.apt.2011.04.005.
  25. K.J. Kim, J.H. Lee, S.H. Lee, Magneto-optical investigation of spinel ferrite CuFe2O4: observation of Jahn-Teller effect in Cu2+ ion, J. Magn. Magn Mater. 279 (2004) 173-177, https://doi.org/10.1016/j.jmmm.2004.01.078.
  26. Soshin Chikazumi, Physics of Ferromagnetism, 2 ed, Oxford University Press, Oxford, 1997.
  27. I.C. Covaliu, J. Neamtu, G. Georgescu, T. Malaeru, C. Cristea, I. Jitaru, Synthesis and Characterization of Ferrites (Fe3O4/CuFe2O4)-calcium Alginate Hybrids for Magnetic Resonance Imaging, n.d.
  28. C.R. Alves, R. Aquino, M.H. Sousa, H.R. Rechenberg, G.F. Goya, F.A. Tourinho, J. Depeyrot, Low temperature experimental investigation of finite-size and surface effects in CuFe2O4 nanoparticles of ferrofluids, J. Metastable Nanocryst. Mater. 20-21 (2004) 694-699. https://doi.org/10.4028/www.scientific.net/JMNM.20-21.694.
  29. U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Superparamagnetic colloids: controlled synthesis and niche applications, Adv. Mater. 19 (2007) 33-60, https://doi.org/10.1002/adma.200600674.
  30. Z. Peng, J.-Y. Hwang, M. Andriese, Microwave power absorption characteristics of ferrites, IEEE Trans. Magn. 49 (2013) 1163-1166, https://doi.org/10.1109/TMAG.2012.2227775.
  31. M. Fedailaine, B. Bellal, S. Berkani, M. Trari, A. Abdi, Photo-electrochemical characterization of the spinel CuFe2O4: application to Ni2+ removal under solar light, Environmental Processes 3 (2016) 387-396, https://doi.org/10.1007/s40710-016-0142-6.
  32. R. Si, M. Flytzani-Stephanopoulos, Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO 2 catalysts for the water-gas shift reaction, Angew. Chem. 120 (2008) 2926-2929, https://doi.org/10.1002/ange.200705828.
  33. O. Aleksic, P. Nikolic, Recent advances in NTC thick film thermistor properties and applications, Facta Univ. - Ser. Electron. Energetics 30 (2017) 267-284, https://doi.org/10.2298/FUEE1703267A.
  34. A. Padampalle, A.D. Suryawanshi, V.M. Navarkhele, D.S. Birajdar, Structural and magnetic properties of nanocrystalline copper ferrites synthesized by sol-gel autocombustion method, Int. J. Recent Technol. Eng. 2 (2013). https://www.researchgate.net/publication/259604934.
  35. M.I. Sayyed, K.A. Mahmoud, E. Lacomme, M.M. AlShammari, N. Dwaikat, Y.S. M. Alajerami, M. Alqahtani, B.O. El-bashir, M.H.A. Mhareb, Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications, Eur. Phys. J. A 136 (2021), https://doi.org/10.1140/epjp/s13360-020-01011-5.
  36. M.H.A. Mhareb, M. Alqahtani, Y.S.M. Alajerami, F. Alshahri, M.I. Sayyed, K. A. Mahmoud, N. Saleh, N. Alonizan, M.S. Al-Buriahi, K.M. Kaky, Ionizing radiation shielding features for titanium borosilicate glass modified with different concentrations of barium oxide, Mater. Chem. Phys. 272 (2021), https://doi.org/10.1016/j.matchemphys.2021.125047.
  37. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, 2003. Version 5, La-Ur-03-1987 II.
  38. Y.S. Rammah, K.A. Mahmoud, F.Q. Mohammed, M.I. Sayyed, O.L. Tashlykov, R. ElMallawany, Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code, Nucl. Eng. Technol. 53 (2021), https://doi.org/10.1016/j.net.2021.02.021.
  39. I. Sazirul, K.A. Mahmoud, M.I. Sayyed, Alim Bunyamin, Md.M. Rahman, A. S. Mollah, Study on the radiation attenuation properties of locally available beeswax as a tissue equivalent bolus material in radiotherapy, Radiat. Phys. Chem. 172 (2020) 108559, https://doi.org/10.1016/j.radphyschem.2019.108559.
  40. D.A. Aloraini, M.Y. Hanfi, M.I. Sayyed, K.A. Naseer, A.H. Almuqrin, P. Tamayo, O. L. Tashlykov, K.A. Mahmoud, Design and gamma-ray attenuation features of new concrete materials for low- and moderate-photons energy protection applications, Materials 15 (2022) 4947, https://doi.org/10.3390/ma15144947.
  41. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, S.A. Bassam, P.N. Naseef Mohammed, N.K. Libeesh, A.S. Sachana, M.I. Sayyed, M.S. Alqahtani, E. El Shiekh, M. U. Khandaker, The radiation shielding competence and imaging spectroscopic based studies of Iron ore region of Kozhikode district, Kerala, Nucl. Eng. Technol. 55 (2023) 2380-2387, https://doi.org/10.1016/j.net.2023.03.038.
  42. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M. S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), https://doi.org/10.1016/j.radphyschem.2022.110004.
  43. I.G. Alhindawy, M.I. Sayyed, D.A. Aloraini, A.H. Almuqrin, M.S. Alomar, G. A. Elawadi, K.A. Mahmoud, A multi-phase investigation to understand the function of lanthanum and neodymium in the zirconia ceramics' synthesis, structural, and gamma-ray protective ability, Radiat. Phys. Chem. 215 (2024) 111336, https://doi.org/10.1016/j.radphyschem.2023.111336.
  44. M.I. Sayyed, E. Hannachi, K.A. Mahmoud, Y. Slimani, Synthesis of different (RE) BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation, Mater. Chem. Phys. 276 (2022) 125412, https://doi.org/10.1016/j.matchemphys.2021.125412.
  45. I.G. Alhindawy, H. Gamal, A.H. Almuqrin, M.I. Sayyed, K.A. Mahmoud, Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals, Nucl. Eng. Technol. 55 (2023), https://doi.org/10.1016/j.net.2023.02.014.
  46. I.G. Alhindawy, M.I. Sayyed, A.H. Almuqrin, K.A. Mahmoud, Optimizing gamma radiation shielding with cobalt-titania hybrid nanomaterials, Sci. Rep. 13 (2023) 8936, https://doi.org/10.1038/s41598-023-33864-y.
  47. R. Sharma, D.P. Bisen, U. Shukla, B.G. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials, Recent Res. Sci. Technol. 4 (2012) 77-79. http://recent-science.com/.
  48. N. Pappas, Calculating retained austenite in steel post magnetic processing using Xray diffraction, B.S, Undergraduate Mathematics Exchange 4 (2006) 8-14.
  49. U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards, MONOGRAPH 25-SECTION 18 Standard X-Ray Diffraction Powder Patterns, 1983.
  50. A. Abdullah, A. Mohammed, Scanning electron microscopy (SEM): a review, in: Proceedings of 2018 International Conference on Hydraulics and Pneumatics - HERVEX, Baile Govora, Romania, 2019. https://www.researchgate.net/publication/330169176.
  51. S.M. Hoque, MdA. Choudhury, MdF. Islam, Characterization of Ni-Cu mixed spinel ferrite, J. Magn. Magn Mater. 251 (2002) 292-303, https://doi.org/10.1016/S0304-8853(02)00700-X.
  52. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, R. Frieser, Introduction to ceramics, J. Electrochem. Soc. 124 (1977) 152C, https://doi.org/10.1149/1.2133296, 152C.
  53. S.A. Bassam, K.A. Naseer, K.A. Mahmoud, C.S. Suchand Sangeeth, M.I. Sayyed, M. S. Alqahtani, E. El Shiekh, Examination of the ionizing radiation shielding behavior of the zinc boro-tellurite glasses doped with dysprosium oxide, Radiat. Phys. Chem. 215 (2024) 111359, https://doi.org/10.1016/j.radphyschem.2023.111359.