DOI QR코드

DOI QR Code

Influence of various metal oxides (PbO, Fe2O3, MgO, and Al2O3) on the mechanical properties and γ-ray attenuation performance of zinc barium borate glasses

  • Aljawhara H. Almuqrin (Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University) ;
  • K.A. Mahmoud (Ural Federal University) ;
  • U. Rilwan (Department of Physics, Faculty of Natural and Applied Sciences, Nigerian Army University) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University)
  • Received : 2024.01.04
  • Accepted : 2024.02.17
  • Published : 2024.07.25

Abstract

The current work aims to fabricate metal oxide-doped (PbO, Fe2O3, MgO, and Al2O3, each of which boasts a purity of 99%) zinc barium borate glasses through the melt quenching technique at the 1000 ℃ melting temperature. The results showed that adding 5 mol.% of metal oxides PbO, Fe2O3, Al2O3, and MgO increases the density of the zinc barium borate glasses. Additionally, the fabricated glasses' mechanical properties were determined based on the Makishima-Mackenzie model, which proved that the highest mechanical properties were achieved for glasses doped with Al2O3 compounds. The mechanical moduli for the glasses doped with Al2O3 reach 80.95 GPa (Young), 59.90 GPa (bulk), 31.75 GPa (shear), and 102.23 GPa (longitudinal). Additionally, the Al2O3-doped glasses' microhardness reaches 4.77 GPa. Moreover, estimation of the fabricated glasses' gamma-ray shielding capacity utilized Monte Carlo simulation. The highest linear attenuation coefficients are 29.132, 19.906, 19.243, and 18.923 cm-1 obtained at 0.033 MeV for glasses dopped by PbO, Fe2O3, MgO, and Al2O3, respectively. Therefore, glasses doped with 5 mol.% of PbO have high gamma-ray shielding capacities followed by glasses doped by Fe2O3.

Keywords

Acknowledgement

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

  1. M.I. Sayyed, Radiation shielding characterization of a Yb:CaBTeX glass system as a function of TeO2 concentration, Opt. Quantum Electron. 56 (2024) 333, https://doi.org/10.1007/s11082-023-05951-x. 
  2. M.Y. Hanfi, M.I. Sayyed, E. Lacomme, I. Akkurt, K.A. Mahmoud, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses, Nucl. Eng. Technol. 53 (2021) 2000-2010, https://doi.org/10.1016/j.net.2020.12.012. 
  3. M.I. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications, J. Non-Cryst. Solids 487 (2018) 53-59, https://doi.org/10.1016/j.jnoncrysol.2018.02.014. 
  4. H. Al-Ghamdi, A. Kumar, J.F.M. Jecong, A.H. Almuqrin, D.I. Tishkevich, M. I. Sayyed, Optical and gamma ray shielding behavior of PbO-B2O3-CuO-CaO glasses, J. Mater. Res. Technol. 18 (2022) 2494-2505, https://doi.org/10.1016/j.jmrt.2022.03.120. 
  5. P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J. Phys. Chem. Solid. 72 (2011) 245-251, https://doi.org/10.1016/j.jpcs.2011.01.007. 
  6. S.M. Tajudin, A.H.A. Sabri, M.Z.A. Aziz, S.F. Olukotun, B.M. Ojo, M.K. Fasasi, Feasibility of clay-shielding material for low-energy photons (Gamma/X), Nucl. Eng. Technol. 51 (2019) 1633-1637, https://doi.org/10.1016/j.net.2019.04.020. 
  7. A. As,kin, M.I. Sayyed, Amandeep Sharma, M. Dal, R. El-Mallawany, M.R. Kacal, Investigation ofthe gamma ray shielding parameters of (100-x) [0.5Li2O-0.1B2O3-0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. Non-Cryst. Solids 521 (2019) 119489, https://doi.org/10.1016/j.jnoncrysol.2019.119489. 
  8. Hurieh Mohammadzadeha, Roya Roohibakhshb, Hamid Reza Rezaie, An investigation on sintering behavior of nanostructured Cu10, 20 wt. % Ni alloy powders, Asian J. Nanosci. Mater. 4 (2021) 95-112. 
  9. M.Kh Hamad, M.H.A. Mhareb, M.I. Sayyed, Y.S.M. Alajerami, R. Alsharhan, M. U. Khandaker, Novel efficient alloys for ionizing radiation shielding applications: a theoretical investigation, Radiat. Phys. Chem. 200 (2022) 110181, https://doi.org/10.1016/j.radphyschem.2022.110181. 
  10. M.A. Imheidat, M.Kh Hamad, M.I. Sayyed, Y.S.M. Alajerami, N.S. Prabhu, S. D. Kamath, M.H. Flaifel, M.H.A. Mhareb, Correlation between mechanical, gamma shielding features and tellurium oxide concentrations in molybdenum aluminum strontium borate glass, Optik 272 (2023) 170336, https://doi.org/10.1016/j.ijleo.2022.170336. 
  11. Qiuling Chen, K.A. Naseer, K. Marimuthu, P. Suthanthira Kumar, Baoji Miao, K. A. Mahmoud, M.I. Sayyed, Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems, J. Aust. Ceram. Soc. 57 (2020) 275-286, https://doi.org/10.1007/s41779-020-00531-8. 
  12. S.F. Olukotun, S.T. Gbenu, O.F. Oladejo, F.O. Balogun, M.I. Sayyed, S.M. Tajudin, E.I. Obiajunwa, M.K. Fasasi, The effect of incorporated recycled low density polyethylene (LDPE) on the fast neutron shielding behaviour (FNSB) of clay matrix using MCNP and PHITS Monte Carlo codes, Radiat. Phys. Chem. 182 (2021) 109351, https://doi.org/10.1016/j.radphyschem.2021.109351. 
  13. A. Alshamari, M.H.A. Mhareb, N. Alonizan, M.I. Sayyed, N. Dwaikat, I. Alrammah, M.Kh Hamad, Q.A. Drmosh, Gamma-ray-induced changes in the radiation shielding, structural, mechanical, and optical properties of borate, tellurite, and borotellurite glass systems modified with barium and bismuth oxide, Optik 281 (2023) 170829, https://doi.org/10.1016/j.ijleo.2023.170829. 
  14. M.H.A. Mhareb, M.I. Sayyed, S. Hashim, M. Alshammari, S. Alhugail, H. Aldoukhi, M.K. Hamad, Y.S. Alajerami, M.U. Khandaker, Radiation shielding features for a new glass system based on tellurite oxide, Radiat. Phys. Chem. 200 (2022) 110094, https://doi.org/10.1016/j.radphyschem.2022.110094. 
  15. M. Kurudirek, Radiation shielding and effective atomic number studies in different types of shielding concretes, lead base and non-lead base glass systems for total electron interaction: a comparative study, Nucl. Eng. Des. 280 (2014) 440-448, https://doi.org/10.1016/j.nucengdes.2014.09.020. 
  16. S.P. Shirmardi, M. Shamsaei, M. Naserpour, Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data, Ann. Nucl. Energy 55 (2013) 288-291, https://doi.org/10.1016/j.anucene.2013.01.002. 
  17. O. Gencel, W. Brostow, C. Ozel, M. Filiz, Concretes Containing Hematite for Use as Shielding Barriers, vol. 16, 2010. 
  18. H. Ozan Tekin, M.I. Sayyed, T. Manici, E.E. Altunsoy, Photon shielding characterizations of bismuth modified borate -silicate-tellurite glasses using MCNPX Monte Carlo code, Mater. Chem. Phys. 211 (2018) 9-16, https://doi.org/10.1016/j.matchemphys.2018.02.009. 
  19. G. Sharma, K. Singh, Manupriya, S. Mohan, H. Singh, S. Bindra, Effects of gamma irradiation on optical and structural properties of PbO-Bi2O3-B2O3 glasses, Radiat. Phys. Chem. 75 (2006) 959-966, https://doi.org/10.1016/j.radphyschem.2006.02.008. 
  20. M.Kh Hamad, Effects of bismuth substitution on the structural and ionizing radiation shielding properties of the novel BaSnBiO perovskites: an experimental study, Mater. Chem. Phys. 308 (2023) 128254, https://doi.org/10.1016/j.matchemphys.2023.128254. 
  21. M.Kh Hamad, Evaluation of photon shielding properties for new refractory tantalum-rich sulfides Ta9(XS3)2 alloys: a study with the MCNP-5, Ann. Nucl. Energy 184 (2023) 109687, https://doi.org/10.1016/j.anucene.2023.109687. 
  22. M. Almurayshid, S. Alsagabi, Y. Alssalim, Z. Alotaibi, R. Almsalam, Feasibility of polymer-based composite materials as radiation shield, Radiat. Phys. Chem. 183 (2021) 109425, https://doi.org/10.1016/j.radphyschem.2021.109425. 
  23. A. Akinci, H. Akbulut, F. Yilmaz, The effect of the red mud on polymer crystallization and the interaction between the polymer-filler, Polym. Plast. Technol. Eng. 46 (2007) 31-36, https://doi.org/10.1080/03602550600916258. 
  24. C.V. More, Z. Alsayed, MohamedS. Badawi, AbouzeidA. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review, Environ. Chem. Lett. 19 (2021) 2057-2090, https://doi.org/10.1007/s10311-021-01189-9. 
  25. A.M. Abdelghany, Y.S. Rammah, Transparent alumino lithium borate glass-ceramics: synthesis, structure and gamma-ray shielding attitude, J. Inorg. Organomet. Polym. Mater. 31 (2021) 2560-2568, https://doi.org/10.1007/s10904-020-01862-6. 
  26. L. Zhou, F. Li, J.-X. Liu, S.-K. Sun, Y. Liang, G.-J. Zhang, High-entropy A2B2O7- type oxide ceramics: a potential immobilising matrix for high-level radioactive waste, J. Hazard Mater. 415 (2021) 125596, https://doi.org/10.1016/j.jhazmat.2021.125596. 
  27. M.I. Sayyed, E. Hannachi, K.A. Mahmoud, Y. Slimani, Synthesis of different (RE) BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation, Mater. Chem. Phys. 276 (2022), https://doi.org/10.1016/j.matchemphys.2021.125412. 
  28. E. Hannachi, M.I. Sayyed, Y. Slimani, K.G. Mahmoud, Synthesis of pristine CaZrO3 and CaZrO3/Pr6O11 ceramic samples and assessment of their radiation protection features, J. Phys. Chem. Solid. 181 (2023) 111498, https://doi.org/10.1016/j.jpcs.2023.111498. 
  29. N. Loukil, Alloying elements of magnesium alloys: a literature review, in: Magnesium Alloys Structure and Properties, IntechOpen, 2022, https://doi.org/10.5772/intechopen.96232. 
  30. J. Singh, H. Singh, J. Sharma, T. Singh, P.S. Singh, Fusible alloys: a potential candidate for gamma rays shield design, Prog. Nucl. Energy 106 (2018) 387-395, https://doi.org/10.1016/j.pnucene.2018.04.002. 
  31. T.A. Taha, A.A. Azab, E.H. El-Khawas, Comprehensive study of structural, magnetic and dielectric properties of borate/Fe3O4 glass nanocomposites, J. Electron. Mater. 49 (2020) 1161-1166, https://doi.org/10.1007/s11664-019-07825-z. 
  32. M.D. Hassib, K.M. Kaky, A. Kumar, E. S, akar, M.I. Sayyed, S.O. Baki, M.A. Mahdi, Boro-silicate glasses co-doped Er+3/Yb+3 for optical amplifier and gamma radiation shielding applications, Phys. B Condens. Matter 567 (2019) 37-44, https://doi.org/10.1016/j.physb.2019.05.006. 
  33. Y.S. Rammah, A.A. Ali, R. El-Mallawany, A.M. Abdelghany, Optical properties of bismuth borotellurite glasses doped with NdCl3, J. Mol. Struct. 1175 (2019) 504-511, https://doi.org/10.1016/j.molstruc.2018.07.071. 
  34. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, M.I. Sayyed, Radiation shielding properties of tellurite-lead-tungsten glasses against gamma and beta radiations, J. Non-Cryst. Solids 551 (2021) 120430, https://doi.org/10.1016/j.jnoncrysol.2020.120430. 
  35. B. Albarzan, M.Y. Hanfi, A.H. Almuqrin, M.I. Sayyed, H.M. Alsafi, K.A. Mahmoud, The influence of titanium dioxide on silicate-based glasses: an evaluation of the mechanical and radiation shielding properties, Materials 14 (2021), https://doi.org/10.3390/ma14123414. 
  36. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.C. Ersundu, A.E. Ersundu, I. V Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses, Radiat. Phys. Chem. 145 (2018) 26-33, https://doi.org/10.1016/j.radphyschem.2017.12.010. 
  37. S.F. Olukotun, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, H.O. Shittu, M.K. Fasasi, F. A. Balogun, Investigation of gamma radiation shielding capability of two clay materials, Nucl. Eng. Technol. 50 (2018) 957-962, https://doi.org/10.1016/j.net.2018.05.003. 
  38. S.F. Olukotun, K.S. Mann, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, A. Joshi, H. O. Tekin, M.I. Sayyed, M.K. Fasasi, F.A. Balogun, T. Korkut, Neutron-shielding behaviour investigations of some clay-materials, Nucl. Eng. Technol. 51 (2019) 1444-1450, https://doi.org/10.1016/j.net.2019.03.019. 
  39. S.F. Olukotun, S.T. Gbenu, O.F. Oladejo, M.I. Sayyed, S.M. Tajudin, A.A. Amosun, O.G. Fadodun, M.K. Fasasi, Investigation of gamma ray shielding capability of fabricated clay-polyethylene composites using EGS5, XCOM and Phy-X/PSD, Radiat. Phys. Chem. 177 (2020) 109079, https://doi.org/10.1016/j.radphyschem.2020.109079. 
  40. S.F. Olukotun, S.T. Gbenu, K.O. Oyedotun, O. Fasakin, M.I. Sayyed, G. O. Akindoyin, H.O. Shittu, M.K. Fasasi, M.U. Khandaker, H. Osman, B.H. Elesawy, Fabrication and characterization of clay-polyethylene composite opted for shielding of ionizing radiation, Crystals 11 (2021) 1068, https://doi.org/10.3390/cryst11091068. 
  41. M.I. Sayyed, A. Askin, M.H.M. Zaid, S.F. Olukotun, M.U. Khandaker, D. I. Tishkevich, D.A. Bradley, Radiation shielding and mechanical properties of Bi2O3-Na2O-TiO2-ZnO-TeO2 glass system, Radiat. Phys. Chem. 186 (2021) 109556, https://doi.org/10.1016/j.radphyschem.2021.109556. 
  42. S.F. Olukotun, M.I. Sayyed, O.F. Oladejo, N. Almousa, S.A. Adeojo, E.O. Ajoge, S. T. Gbenu, M.K. Fasasi, Computation of gamma buildup factors and heavy ions penetrating depths in clay composite materials using phy-X/PSD, EXABCal and SRIM Codes, Coatings 12 (2022) 1512, https://doi.org/10.3390/coatings12101512. 
  43. M.I. Sayyed, Y.S. Rammah, A.S. Abouhaswa, H.O. Tekin, B.O. Elbashir, ZnO-B2O3-PbO glasses: synthesis and radiation shielding characterization, Physica B: Phys. Condens. Matter (2018), https://doi.org/10.1016/j.physb.2018.08.024. 
  44. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO-Bi2O3-B2O3 and ZnO-Bi2O3-B2O3 glass systems, Mater. Chem. Phys. 217 (2018) 11-22, https://doi.org/10.1016/j.matchemphys.2018.06.034. 
  45. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems, Compos. B Eng. 165 (2019) 636-647, https://doi.org/10.1016/j.compositesb.2019.02.022. 
  46. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus and Poisson's ratio of glass, J. Non-Cryst. Solids 17 (1975) 147-157, https://doi.org/10.1016/0022-3093(75)90047-2. 
  47. A. Makishima, J.D. Mackenzie, Direct calculation of Young's moidulus of glass, J. Non-Cryst. Solids 12 (1973) 35-45, https://doi.org/10.1016/0022-3093(73)90053-7. 
  48. A. Abd El-Moneim, H.Y. Alfifi, Approach to dissociation energy and elastic properties of vanadate and V2O5-contained glasses from single bond strength: Part I, Mater. Chem. Phys. 207 (2018) 271-281, https://doi.org/10.1016/j.matchemphys.2017.12.057. 
  49. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, 2003. Version 5, La-Ur-03-1987 II.