Acknowledgement
본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사의 말씀 드립니다. 본 연구는 부산대학교 기본연구지원사업(2년)에 의하여 연구가 수행되었습니다.
References
- Ajayamohan, R., S. A. Rao, and T. Yamagata, 2008: Influence of Indian Ocean Dipole on Poleward Propagation of Boreal Summer Intraseasonal Oscillations. J. Climate, 21, 5437-5454, doi:10.1175/2008JCLI1758.1.
- Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos., 111, doi:10.1029/2005JD006290.
- Ali, H., and V. Mishra, 2018: Contributions of dynamic and thermodynamic scaling in subdaily precipitation extremes in India. Geophys. Res. Lett., 45, 2352-2361, doi:10.1002/2018GL077065.
- Allan, R. P. , B. J. Soden, V. O. John, W. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.
- Chen, J., and S. Bordoni, 2016: Early summer response of the East Asian summer monsoon to atmospheric CO2 forcing and subsequent sea surface warming. J. Climate, 29, 5431-5446, doi:10.1175/JCLI-D-15-0649.1.
- Cubasch, U. , G. A. Meehl, G. J. Boer, R. J. Stouffer, M. Dix, A. Noda, C. A. Senior, and K. S. Yap, 2001: Projections of future climate change. In Climate Change 2001: The scientific basis. Contribution of WG1 to the Third Assessment Report of the IPCC (TAR), 525-582, Cambridge University Press.
- Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: the role of internal variability. Climate Dyn., 38, 527-546, doi:10.1007/s00382-010-0977-x.
- Ding, Y., Y. Liu, Y. Sun, and Y. Song, 2010: Weakening of the Asian summer monsoon and its impact on the precipitation pattern in China. Int. J. Water Resour. Development, 26, 423-439, doi:10.1080/07900627.2010.492607.
- Do, H.-S., J. Kim, E.-J. Cha, E.-C. Chang, S.-W. Son, and G. Lee, 2023: Long-term change of summer mean and extreme precipitations in Korea and East Asia. Int. J. Climatol., 43, 3476-3492, doi:10.1002/joc.8039.
- Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.
- Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 1704-1711, doi:10.1002/2013GL059158.
- Fang, H., Y. Qiao, and M. Jian, 2023: Dynamic and thermodynamic causes of summer extreme precipitation over South China. Atmos.c Res., 293, 106894, doi:10.1016/j.atmosres.2023.106894.
- Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547-554, doi:10.1002/2013GL058499.
- Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. climate, 18, 1326-1350, doi:10.1175/JCLI3339.1.
- Gusain, A., H. Vittal, S. Kulkarni, S. Ghosh, and S. Karmakar, 2019: Role of vertical velocity in improving finer scale statistical downscaling for projection of extreme precipitation. Theor. Appl. Climatol., 137, 791-804, doi:10.1007/s00704-018-2615-1.
- Ha, K.-J., K.-Y. Heo, S.-S. Lee, K.-S. Yun, and J.-G. Jhun, 2012: Variability in the East Asian monsoon: A review. Meteor. Appl., 19, 200-215, doi:10.1002/met.1320.
- Ha, K.-J., S. Moon, A. Timmermann, and D. Kim, 2020: Future changes of summer monsoon characteristic and evaporative demand over Asia in CMIP6 simulations. Geophy. Res. Lett., 47, e2020GL087492, doi:10.1029/2020GL087492.
- Hassler, B., and A. Lauer, 2021: Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere, 12, 1462, doi:10.3390/atmos12111462.
- Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
- Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014: Summertime land-sea thermal contrast and atmospheric circulation over East Asia in a warming climate-Part I: Past changes and future projections. Climate Dyn., 43, 2553-2568, doi:10.1007/s00382-014-2073-0.
- Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419-1444, doi:10.1175/JCLI4066.1.
- Kim, H.-A., J. Ho, G. Zhang, K.-J. Ha, S.-Y. Hong, and C.-H. Ho, 2023a: Polarimetric Radar Signatures in Various Lightning Activities During Seoul (Korea) Flood on August 8, 2022. Asia-Pac. J. Atmos. Sci., doi:10.1007/s13143-023-00346-0.
- Kim, H.-R., M. Moon, J. Yun, and K.-J. Ha, 2023b: Trends and Spatio-Temporal Variability of Summer Mean and Extreme Precipitation across South Korea for 1973~2022. Asia-Pac. J. Atmos. Sci., 59, 385-398, doi:10.1007/s13143-023-00323-7.
- Lee, J.-Y., P.-C. Hsu, S. Moon, and K.-J. Ha, 2017: Influence of boreal summer intraseasonal oscillation on Korean precipitation and its long-term changes. Atmosphere, 27, 435-444, doi:10.14191/Atmos.2017.27.4.435.
- Li, D., T. Zhou, L. Zou, W. Zhang, and L. Zhang, 2018: Extreme high-temperature events over East Asia in 1.5℃ and 2℃ warmer futures: analysis of NCAR CESM low-warming experiments. Geophys. Res. Lett., 45, 1541-1550, doi:10.1002/2017GL076753.
- Li, J., R. Ding, Z. Wu, Q. Zhong, B. Li, and J. Li, 2019: Inter-decadal change in potential predictability of the East Asian summer monsoon. Theor. Appl. Climatol., 136, 403-415, doi:10.1007/s00704-018-2482-9.
- Li, J., Y. Zhao, D. Chen, Y. Kang, and H. Wang, 2022: Future precipitation changes in three key sub-regions of East Asia: the roles of thermodynamics and dynamics. Climate Dyn., 59, 1377-1398, doi:10.1007/s00382-021-06043-w.
- Li, X. , M. Ting, C. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 4107-4125, doi:10.1175/JCLI-D-14-00559.1.
- Meehl, G. A., F. Zwiers, J. Evans, T. Knutson, L. Mearns, and P. Whetton, 2000: Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bull. Amer. Meteor. Soc., 81, 427-436, doi:10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2.
- Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378-381, doi:10.1038/nature09763.
- Moon, S., and K.-J. Ha, 2019: Early Indian summer monsoon onset driven by low soil moisture in the Iranian desert. Geophys. Res. Lett., 46, 10568-10577, doi:10.1029/2019GL084520.
- Moon, S., and K.-J. Ha, 2020: Future changes in monsoon duration and precipitation using CMIP6. npj Clim. Atmos. Sci., 3, doi:10.1038/s41612-020-00151-w.
- Oh, H., and K.-J. Ha, 2016: Prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon. Climate Dyn., 47, 2025-2037, doi:10.1007/s00382-015-2948-8.
- Oh, H., K.-J. Ha, and A. Timmermann, 2018: Disentangling impacts of dynamic and thermodynamic components on late summer rainfall anomalies in East Asia. J. Geophys. Res. Atmos., 123, 8623-8633, doi:10.1029/2018JD028652.
- Oh, H., K.-J. Ha, and J.-Y. Jeong, 2023: Identifying Dynamic and Thermodynamic Contributions to the Record-Breaking 2022 Summer Extreme Rainfall Events in Korea. Asia-Pac. J. Atmos. Sci., 1-13, doi:10.1007/s13143-023-00334-4.
- Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382-385, doi:10.1038/nature09762.
- Pfahl, S., P. A. O'Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change, 7, 423-427, doi:10.1038/nclimate3287.
- Roxy, M. K., S. Ghosh, A. Pathak, R. Athulya, M. Mujumdar, R. Murtugudde, T. Pascal, and M. Rajeevan, 2017: A threefold rise in widespread extreme rain events over central India. Nature Commun., 8, 1-11, doi:10.1038/s41467-017-00744-9.
- Sharma, T., H. Vittal, S. Karmakar, and S. Ghosh, 2020: Increasing agricultural risk to hydro-climatic extremes in India. Environ. Res. Lett., 15, 034010, doi:10.1088/1748-9326/ab63e1.
- Sorland, S. L., and A. Sorteberg, 2015: The dynamic and thermodynamic structure of monsoon low-pressure systems during extreme rainfall events. Tellus A: Dyn. Meteor. Oceanogr., 67, 27039, doi:10.3402/tellusa.v67.27039.
- Sudharsan, N. , S. Karmakar, H. J. Fowler, and V. Hari, 2020: Large-scale dynamics have greater role than thermodynamics in driving precipitation extremes over India. Climate Dyn., 55, 2603-2614, doi:10.1007/s00382-020-05410-3.
- Takahashi, H. G., and H. Fujinami, 2021: Recent decadal enhancement of Meiyu-Baiu heavy rainfall over East Asia. Sci. Reports, 11, 13665, doi:10.1038/s41598-021-93006-0.
- Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327-339, doi:10.1023/A:1005488920935.
- Vittal, H., S. Ghosh, S. Karmakar, A. Pathak, and R. Murtugudde, 2016: Lack of dependence of Indian summer monsoon rainfall extremes on temperature: an observational evidence. Sci. Reports, 6, 31039, doi:10.1038/srep31039.
- Vittal, H., S. Karmakar, S. Ghosh, and R. Murtugudde, 2020: A comprehensive India-wide social vulnerability analysis: highlighting its influence on hydro-climatic risk. Environ. Res. Lett., 15, 014005, doi:10.1088/1748-9326/ab6499.
- Walker, J. M., S. Bordoni, and T. Schneider, 2015: Interannual variability in the large-scale dynamics of the South Asian summer monsoon. J. Climate, 28, 3731-3750, doi:10.1175/JCLI-D-14-00612.1.
- Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449-4463, doi:10.1175/2008JCLI2183.1.
- Wang, B., S.-Y. Yim, J.-Y. Lee, J. Liu, and K.-J. Ha, 2014: Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Climate Dyn., 42, 83-100, doi:10.1007/s00382-013-1769-x.
- Wang, Z., J. Xu, Z. Zeng, M. Ke, and X. Feng, 2024: Understanding the 2022 extreme Dragon-boat rainfall in South China from the combined land and ocean forcing. Asia-Pac. J. Atmos. Sci., doi:10.1007/s13143-024-00356-6.
- Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res. Atmos., 114, doi:10.1029/2009JD011733.
- Xu, L., T. Zhang, A. Wang, W. Yu, and S. Yang, 2022: Variations of summer extreme and total precipitation over Southeast Asia and associated atmospheric and oceanic features. J. Climate, 35, 6395-6409, doi:10.1175/JCLI-D-21-1020.1.
- Yao, C., W. Qian, S. Yang, and Z. Lin, 2010: Regional features of precipitation over Asia and summer extreme precipitation over Southeast Asia and their associations with atmospheric-oceanic conditions. Meteor. Atmos. Phys., 106, 57-73, doi:10.1007/s00703-009-0052-5.
- Yun, K.-S., K.-H. Seo, and K.-J. Ha, 2010: Interdecadal change in the relationship between ENSO and the intraseasonal oscillation in East Asia. J. Climate, 23, 3599-3612, doi:10.1175/2010JCLI3431.1.
- Zhao, Y., D. Chen, Y. Deng, S.-W. Son, X. Wang, D. Di, M. Pan, and X. Ma, 2021: How were the eastward-moving heavy rainfall events from the Tibetan Plateau to the lower reaches of the Yangtze River enhanced?. J. Climate, 34, 607-620, doi:10.1175/JCLI-D-20-0226.1.