• Title/Summary/Keyword: Asian monsoon

Search Result 142, Processing Time 0.022 seconds

Study on Response of Ecosystem to the East Asian Monsoon in Eastern China Using LAI Data Derived from Remote Sensing Information

  • Zhang, Jiahua;Yao, Fengmei;Fu, Congbin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1298-1300
    • /
    • 2003
  • Based on the Leaf Area Index (LAI) data derived from remote sensing information and eco-climate data, the responses of regional ecosystem variations in seasonal and interannual scales to the East Asian monsoon are studied in this paper. It is found that the vegetation ecosystems of eastern China are remarkably correlated with the East Asian monsoon in seasonal and interannual scales. In the seasonal timescale, the obvious variations of the vegetation ecosystems occur with the development of the East Asian monsoon from the south in the spring to the north in the autumn. In the interannual scale, high LAI appears in the strong East Asian monsoon year, whereas low LAI is related to the weak East Asian monsoon year. These further lead to the characteristic of 'onsoon-driven ecosystem' in the eastern China monsoon region, which can be revealed by LAI.

  • PDF

Interaction among the East Asian Summer and Winter Monsoons, the Tropical Western Pacific and ENSO Cycle

  • Huang, Rong-Hui;Lu, Ri-Yu;Chen, Wen;Chen, Ji-Rong
    • Atmosphere
    • /
    • v.13 no.2
    • /
    • pp.47-68
    • /
    • 2003
  • Recent advances in the studies on the interaction between Asian monsoon and ENSO cycle are reviewed in this paper. Through the recent studies, the East Asian summer monsoon circulation system and the East Asian climate system have proposed. Moreover, different responses of the (winter and summer) monsoon circulation and summer rainfall anomalies in East Asia to ENSO cycle during its different stages have been understood further. Recently, the studies on the dynamical effect of East Asian monsoon on the thermal variability of the tropical western Pacific and ENSO cycle have been greatly advanced. These studies demonstrated further that ENSO cycle originates from the tropical western Pacific, and pointed out that the dynamical effect of East Asian winter and summer monsoons on ENSO cycle may be through the atmospheric circulation and zonal wind anomalies over the tropical western Pacific, which can excite the oceanic Kelvin wave and Rossby waves in the equatorial Pacific. Besides, the scientific problems in the interaction between Asian monsoon and ENSO cycle, which should be studied further in the near future, are also pointed out in this paper.

Classification of Intraseasonal Oscillation in Precipitation using Self-Organizing Map for the East Asian Summer Monsoon (동아시아 여름몬순 지수의 자기조직화지도(SOM)에 의한 강수량의 계절 내 진동 분류)

  • Chu, Jung-Eun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • The nonlinear characteristics of summer monsoon intraseasonal oscillation (ISO) in precipitation, which is manifested as fluctuations in convection and circulation, is one of the major difficulty on the prediction of East Asian summer monsoon (EASM). The present study aims to identify the spatial distribution and time evolution of nonlinear phases of monsoon ISO. In order to classify the different phases of monsoon ISO, Self-Organizing Map(SOM) known as a nonlinear pattern recognition technique is used. SOM has a great attractiveness detecting self-similarity among data elements by grouping and clustering such self-similar components. The four important patterns are demonstrated as Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. It is found that SOM well captured the formation of East Asian monsoon trough during early summer and its northward migration together with enhanced convection over subtropical western Pacific and regionally intensive precipitation including Meiyu, Changma and Baiu. The classification of fundamental large scale spatial pattern and evolutionary history of nonlinear phases of monsoon ISO provides the source of predictability for extended-range forecast of summer precipitation.

Dominant Modes of the East Asian Summer Monsoon Using Equivalent Potential Temperature (상당온위를 사용한 동아시아 여름철 몬순의 6월 및 7월 주 변동 모드 분석)

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.483-488
    • /
    • 2012
  • The monsoon front lies on East Asian region, but it gradually propagates to the north during the boreal summer. The equivalent potential temperature (EPT) reveals the thermodynamical features of air masses and monsoon front. Therefore, this study considered the thermodynamical EPT and dynamical wind fields to clarify the peculiarity of East Asian summer monsoon (EASM) variations in June and July, respectively. Western North Pacific subtropical high (WNPSH) and Okhotsk sea high (OSH) both play the crucial role to interannual variations of EASM frontal activity and amount of rainfall. The OSH is important in June, but the WNPSH is key factor in July. Furthermore, the OSH (June) is affected by North Atlantic tripolar sea surface temperature (SST) pattern and WNPSH (July) is influenced by North Indian Ocean SST warming.

Monsoonal Precipitation Variation in the East Asia: Tree-Ring Evidences from Korea and Inner Mongolia

  • Park, Won-Kyu;Liu Yu
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.63-69
    • /
    • 2003
  • Three tree-ring monsoon rainfall reconstructions from China and Korea have been used in this paper to investigate the variation of the East Asian summer monsoon over the past 160 years. Statistically, there is no linear correlation on a year-by-year basis between Chinese and Korean monsoon rainfall, but region-wide synchronous variation on decadal-scale was observed. Strong monsoon intervals (more rainfall) were 1860-1890, 1910-1925,1940-1960, and weak monsoon periods (dry or even drought) were 1890-1910, 1925-1940, 1960- present. Reconstructions also display that the East Asian summer monsoon suddenly changed from strong into weak around mid-1920, and the East Asian summer monsoon keeps going weak after 1960.

  • PDF

Overview of Climate Change and Unusual Regional Climate and the Future (기후변화와 이상기상 발생의 현황과 미래)

  • Moon Sung-Euii
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.3-11
    • /
    • 2000
  • The Asian summer monsoon has a profound social and economic impact in East Asia and its surrounding countries. The monsoon is basically a response of the atmosphere to the differential heating between the land mass of the Asian continent and the adjacent oceans. The atmospheric response, however, is quite complicated due to the interactions between the atmospheric heat sources, land-sea contrast, and topography, The occurrence of extreme summertime floods in Korea, Japan, and China in 1998 and 1999 has highlighted the range of variability of the East Asian summertime monsoon circulation and spurred interest in investigating the cause of such extreme variability. While ENSO is often considered a prime mechanism responsible for the unusual hydrological disasters in East Asia, understanding of the connection between ENSO and the East Asian monsoon is hampered by their dynamic complexities. Along with a recent phenomenon of weather abnormalities observed in many parts of the globe, Korea has seen its share of increased weather abnormalities such as the record-breaking heavy rainfalls due to a series of flash floods in the summers of 1998 and 1999, following devastating Yangtze river floods in China. A clear regime shift is found in the tropospheric mean temperature in the northern hemisphere middle latitudes and the surface temperature over the Asian continent during the summer with a sudden warming since 1977. Either decadal climate variation or climate regime shift in the Asian continent is evident and may have altered the characteristics of the East Asian summer monsoon. Considering the summertime rainfall amount in Korea is overall increased lately, the 1998/99 heavy rainfalls may not be isolated episodes related only to ENSO, but could be a part of long-term climate variation. The record-breaking heavy summer rainfalls in Korea may not be direct impact of ENSO. Instead, the effects of decadal climate variation and ENSO may be coupled to each other and also to the East Asian summer monsoon system, while their individual impacts are difficult to separate.

  • PDF

Diagnosis of Northeast Asian Summer Precipitation using the Western North Pacific Subtropical High Index (북서태평양 아열대고기압 지수를 이용한 북동아시아 여름철 강수의 진단)

  • Kwon, MinHo
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.102-106
    • /
    • 2013
  • The intensity of the East Asian summer monsoon has a negative correlation with that of the western North Pacific summer monsoon. Based on the relationship, we suggest the potential predictability of Northeast Asian summer precipitation by using the relationship. The western North Pacific subtropical high (WNPSH) properly represents the intensity of the western North Pacific summer monsoon. It also dominates climate anomalies in the western North Pacific-East Asian region in summertime. The estimates of the Northeast Asian summer rainfall anomalies using WNPSH variability have a greater benefit than those using the western North Pacific monsoon index.

The Impact of Interaction between Cloud and Longwave Radiation on the Asian Monsoon Circulation (구름-장파복사 상호작용이 아시아 몬순에 미치는 영향)

  • Ryu, Geun-Hyeok;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Three-dimensional distributions of longwave radiation flux for the April-September 1998 period are generated from radiative transfer calculations using the GEWEX Asian Monsoon Experiment (GAME) reanalysis temperature and humidity profiles and International Satellite Cloud Climatology Project (ISCCP) cloudiness as inputs to understand the effect of cloud radiative forcing in the monsoon season. By subtracting the heating of the clear atmosphere from the cloudy radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the Asian monsoon. Cloud-induced heating exhibits its maximum heating areas within the Indian Ocean and minimum heating over the Tibetan Plateau, which establishes the north-south oriented differential heating gradient. Considering that the differential heating is a ultimate source generating the atmospheric circulation, the cloud-induced heating gradient established between the Indian Ocean and the Plateau can enhance the strength of the north-south Hadley-type monsoon circulation. Cooling at cloud top and warming at cloud bottom, which are the vertical distributions of cloud-induced heating, can exert on the monsoon circulation by altering the atmospheric stability.

UTILIZATION OF COMMON GRASSES BY GOATS IN TWO SEASONS

  • Islam, M.;Alam, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.199-202
    • /
    • 1996
  • The effect of feeding freshly-cut common grasses on growth performance of Black Bengal goats during the pre-monsoon and pre-dry season was evaluated. Four castrated goats of 5-6 months age with a mean initial body weight were 11.17 and 10.23 kg for pre-monsoon and pre-dry season respectively, were used as experimental animal. Nutrient during the pre-monsoon season contained higher nitrogen(15.6g/kg) and less DM(196.8g/kg) than the grass harvested in pre-dry season where nitrogen was 12.8 g/kg and DM was 454.9 g/kg. Intake of DM, OM, N and NDF were 73.12 g, 67.12 g, 964.68 mg and 50.14 g/kg $W^{0.75}$ respectively in pre-monsoon were higher than those in pre-dry season at p<0.01 level of significance. Higher(p<0.01) growth(35.71 g/day) rate was found in pre-monsoon season. It may concluded that grasses grown during the pre-monsoon season was higher nitrogen value and appeared to be more palatable.

Recent Changes in Relationship between East Asian and WNP Summer Monsoons (최근 동아시아 여름몬순과 북서태평양 여름몬순의 관계 변화)

  • JiYun Shin;Kang-Jin Lee;MinHo Kwon
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.319-323
    • /
    • 2024
  • It has been recognized that interannual relationship between Northeast Asian and western North Pacific (WNP) summer monsoon intensities has a negative correlation with a statistical significance. This teleconnection can be understood by the responses to the stationary Rossby wave, which is forced by variability of the western North Pacific summer monsoon intensity. In addition, the relationship between two monsoon intensities have a large variability on decadal time-scale associated with adjacent climate variability. The study for the recent changes in these long-term relationships has not been reported so far. This study suggests the recent relationship between Northeast Asian and WNP summer monsoons with an extension of the analysis period in the previous studies. Based on the reanalysis datasets, this study also shows atmospheric teleconnection changes associated with El Nino in summertime during the different decadal periods. This study also suggests the possible reasons for the analysis results in terms of teleconnection changes.