DOI QR코드

DOI QR Code

Current Status of AERONET Observations in South Korea and Analysis of Long-Term Changes in Aerosol Optical Depth and Aerosol Distribution

국내 AERONET 관측 현황과 장기간 에어로졸 광학 깊이의 변화 및 에어로졸 분포 분석

  • Seonghyeon Jang (BK21 School of Earth and Environment Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Junshik Um (BK21 School of Earth and Environment Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University)
  • 장성현 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기과학전공) ;
  • 엄준식 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기과학전공)
  • Received : 2024.05.14
  • Accepted : 2024.06.29
  • Published : 2024.08.31

Abstract

This study analyzed the distribution of Aerosol Robotic Network (AERONET) Version 3 Level 2.0 data, spanning over two decades, across South Korea and its six administrative regions (Seoul metropolitan area, Chungcheong, Jeolla, Gangwon, Gyeongsang, and Jeju). The research assessed long-term trends in aerosol optical depth (AOD) and mass concentration of particulate matter (i.e., PM10 and PM2.5), using data from the AERONET direct sun product and AirKorea, respectively. Additionally, eight aerosol types were identified using the scattering Ångström exponent and absorption Ångström exponent from the AERONET inversion product. The study further explored their domestic and regional distributions. Findings indicated that AERONET data were predominantly concentrated in the western regions of South Korea, including the Seoul metropolitan area, Chungcheong, and Jeolla, with a higher frequency of data in spring, thus demonstrating spatial and temporal heterogeneity. The annual average AOD exhibited a declining trend of -0.006 yr-1. Similarly, PM10 and PM2.5 mass concentrations decreased by -1.324 ㎍ m-3 yr-1 and -1.335 ㎍ m-3 yr-1, respectively. These trends in AOD and PM10 (PM2.5) demonstrated positive correlations, with correlation coefficients of 0.674 (0.753) and statistically significant low p-values of 0.00058 (0.03), respectively. The analysis also revealed that aerosols in South Korea predominantly consisted of black carbon (BC) or BC-mixed types (84.09%), with a notable presence of smaller, less absorbent aerosol types (13.11%).

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었습니다. 본 연구에 사용된 국내 AERONET 관측 지점의 선포토미터 자료를 제공해주신 모든 책임 연구자분들과 관리자분들께 감사드립니다. 본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다.

References

  1. Andrews, E., and Coauthors, 2019: Overview of the NOAA/ESRL federated aerosol network. Bull. Amer. Meteor. Soc., 100, 123-135, doi:10.1175/BAMS-D-17-0175.1.
  2. Bae, M., B.-U. Kim, H. C. Kim, and S. Kim, 2020: A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010~2017. Atmosphere, 11, 141, doi:10.3390/atmos11020141.
  3. Bergin, M. H., S. E. Schwartz, R. N. Halthore, J. A. Ogren, and D. L. Hlavka, 2000: Comparison of aerosol optical depth inferred from surface measurements with that determined by Sun photometry for cloud-free conditions at a continental U.S. site. J. Geophys. Res., 105, 6807-6816, doi:10.1029/1999JD900454.
  4. Bergstrom, R. W., P. B. Russell, and P. Hignett, 2002: Wavelength dependence of the absorption of black carbon particles: predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. J. Atmos. Sci., 59, 567-577, doi:10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2.
  5. Bergstrom, R. W., P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, 2007: Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys., 7, 5937-5943, doi:10.5194/acp-7-5937-2007.
  6. Cappa, C. D., K. R. Kolesar, X. Zhang, D. B. Atkinson, M. S. Pekour, R. A. Zaveri, A. Zelenyuk, and Q. Zhang, 2016: Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California. Atmos. Chem. Phys., 16, 6511-6535, doi:10.5194/acp-16-6511-2016.
  7. Carrico, C. M., M. J. Rood, J. A. Ogren, C. Neusub, A. Wiedensohler, and J. Heintzenberg, 2000: Aerosol optical properties at Sagres, Portugal during ACE-2. Tellus, Ser. B, 52, 694-715, doi:10.1034/j.1600-0889.2000.00049.x.
  8. Cazorla, A., R. Bahadur, K. J. Suski, J. F. Cahill, D. Chand, B. Schmid, V. Ramanathan, and K. A. Prather, 2013: Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmos. Chem. Phys., 13, 9337-9350, doi:10.5194/acp-13-9337-2013.
  9. Charlson, R. J., T. L. Anderson, and H. Rodhe, 1999: Direct climate forcing by anthropogenic aerosols: Quantifying the link between atmospheric sulfate and radiation. Contrib. Atmos. Phys., 72, 79-94.
  10. Cheng, T., and Coauthors, 2015: Seasonal variation and difference of aerosol optical properties in columnar and surface atmospheres over Shanghai. Atmos. Environ., 123, 315-326, doi:10.1016/j.atmosenv.2015.05.029.
  11. Choi, J.-S., and Coauthors, 2016: A study on chemical characteristics of aerosol composition at west inflow regions in the Korean Peninsula I. Characteristics of PM concentration and chemical components. J. Korean Soc. Atmos. Environ., 32, 469-484, doi:10.5572/KOSAE.2016.32.5.469.
  12. Crawford, J. H., and Coauthors, 2021: The Korea-United States Air Quality (KORUS-AQ) field study. Elementa-Sci. Anthrop., 9, 2-27, doi:10.1525/elementa.2020.00163.
  13. Dubovik, O., and M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res., 105, 20673-20696, doi:10.1029/2000JD900282.
  14. Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, 2000: Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements. J. Geophys. Res., 105, 9791-9806, doi:10.1029/2000JD900040.
  15. Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, 2002a: Nonspherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett., 29, 1415, doi:10.1029/2001GL014506.
  16. Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, 2002b: Variability of absorption and optical properties of key aerosol types observed in Worldwide locations. J. Atmos. Sci., 59, 590-608, doi:10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
  17. Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, and Coauthors, 2006: Application of light scattering by spheroids for accounting for particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.
  18. Eom, S., J. Kim, S. Lee, B. N. Holben, T. F. Eck, S.-B. Park, and S. S. Park, 2022: Long-term variation of aerosol optical properties associated with aerosol types over East Asia using AERONET and satellite (VIIRS, OMI) data (2012~2019). Atmos. Res., 280, 106457, doi:10.1016/j.atmosres.2022.106457.
  19. Fierz-Schmidhauser, R., P. Zieger, G. Wehrle, A. Jefferson, J. A. Ogren, U. Baltensperger, and E. Weingartner, 2010: Measurement of relative humidity dependent light scattering of aerosols. Atmos. Meas. Tech., 3, 39-50, doi:10.5194/amt-3-39-2010.
  20. Ghim, Y.-S., 2011: Impacts of Asian dust on atmospheric environment. J. Korean Soc. Atmos. Environ., 27, 255-271, doi:10.5572/KOSAE.2011.27.3.255.
  21. Giles, D. M., and Coauthors, 2019: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database - automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech., 12, 169-209, doi:10.5194/amt-12-169-2019.
  22. Ham, J., H. J. Lee, J. W. Cha, and S.-B. Ryoo, 2017: Potential source of PM10, PM2.5, and OC and EC in Seoul during spring 2016. Atmos., 27, 41-54, doi:10.14191/Atmos.2017.27.1.041.
  23. Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513-543, doi:10.1029/1999RG000078.
  24. Higurashi, A., and T. Nakajima, 2002: Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys. Res. Lett., 29, 1836, doi:10.1029/2002GL015357.
  25. Holben, B. N., and Coauthors, 1998: AERONET-A federated instrument Network and data archive for aerosol characterization. Remote Sens. of Environ., 66, 1-16, doi:10.1016/S0034-4257(98)00031-5.
  26. Hong, S.-B., D.-S. Jung, S.-B. Lee, D.-E. Lee, S.-H. Shin, and C.-H. Kang, 2011: Ionic composition comparison of atmospheric aerosols at coastal and mountainous sites of jeju island. Anal. Sci. Technol., 24, 24-37, doi:10.5806/AST.2011.24.1.024.
  27. Huang, J., and Coauthors, 2016: Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Angstrom exponent with AERONET. J. Geophys. Res. Atmos., 121, 7139-7160, doi:10.1002/2016JD024834.
  28. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, 1535 pp.
  29. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, H. Lee and J. Romero (eds.), IPCC, 184 pp.
  30. Jeong, U., J. Kim, H. Lee, and Y. G. Lee, 2017: Assessing the effect of long-range pollutant transportation on air quality in Seoul using the conditional potential source contribution function method. Atmos. Environ., 150, 33-44, doi:10.1016/j.atmosenv.2016.11.017.
  31. Kang, Y., S. Lim, M. Lee, and H.-J. Yoo, 2021: Vertical distributions of refractory black carbon over the yellow Sea during the Spring 2020. J. Korean Soc. Atmos. Environ., 37, 710-728, doi:10.5572/KOSAE.2021.37.5.710.
  32. Kim, J., J. Lee, H.-C. Lee, A. Higurashi, T. Takemura, and C.-H. Song, 2007: Consistency of the aerosol type classification from satellite remote sensing during the atmospheric brown cloud-East Asia regional experiment campaign. J. Geophys. Res. Atmos., 112, D22S33, doi:10.1029/2006JD008201.
  33. Kim, J. E., and Coauthors, 2022: Characteristics of Asian dust observed over the Yellow Sea during YES-AQ campaign in March, 2021 based on vessel and aircraft measurement. J. Korean Soc. Atmos. Environ., 38, 557-576, doi:10.5572/KOSAE.2022.38.4.557.
  34. Kim, S.-W., I.-J. Choi, and S.-C. Yoon, 2010: A multi-year analysis of clear-sky aerosol optical properties and direct radiative forcing at Gosan, Korea (2001~2008). Atmos. Res., 95, 279-287, doi:10.1016/j.atmosres.2009.10.008.
  35. KLRI, 2015: A study on the improvement of air quality management legislation system to reduce the levels of fine particle, lows to reduce precirculate matters, Korea Legislation Research Institute, 135 pp.
  36. Koloutsou-Vakakis, S., C. M. Carrico, P. Kus, M. J. Rood, Z. Li, R. Shrestha, J. A. Ogren, J. C. Chow, and J. G. Watson, 2001: Aerosol properties at a midlatitude Northern Hemisphere continental site. J. Geophys. Res., 106, 3019-3032, doi:10.1029/2000JD900126.
  37. Kong, L., J. Xin, W. Zhang, and Y. Wang, 2016: The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM10, PM2.5 distributions retrieved by MODIS. Environ. Pollut., 216, 350-360, doi:10.1016/j.envpol.2016.05.085.
  38. Kong, W., and F. Yi, 2015: Convective boundary layer evolution from lidar backscatter and its relationship with surface aerosol concentration at a location of a central China megacity. J. Geophys. Res. Atmos., 120, 7928-7940, doi:10.1002/2015JD023248.
  39. Lee, J., J. Kim, C.-H. Song, S.-B. Kim, Y. Chun, B.-J. Sohn, and B. N. Holben, 2010: Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ., 44, 3110-3117, doi:10.1016/j.atmosenv.2010.05.035.
  40. Lee, K.-H., and Y.-J. Kim, 2004: Russian forest fire smoke aerosol monitoring using satellite and AERONET data. J. Korean Soc. Atmos. Environ., 20, 437-450.
  41. Lee, K.-H., J.-E. Kim, Y.-J. Kim, and J. Kim, 2004: Impact of the smoke aerosol from russian forest fires on the atmospheric environment over Korea during May 2003. J. Korean Soc. Atmos. Environ., 20, 603-613, doi:10.1016/j.atmosenv.2004.09.032.
  42. Lee, S., and Coauthors, 2018: Characteristics of classified aerosol types in South Korea during the MAPS-Seoul campaign. Aerosol Air Qual. Res., 18, 2195-2206, doi:10.4209/aaqr.2017.11.0474.
  43. Li, Z. Q., and Coauthors, 2018: Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun-Sky radiometer observation Network (SONET) measurements. Bull. Amer. Meteor. Soc., 99, 739-755, doi:10.1175/BAMS-D-17-0133.1.
  44. MOE, 2019: Enforcement Rule of the Special Act on the Reduction and Management of Fine Dust. Ministry of Environment [Available online at https://www.law.go.kr/lsInfoP.do?lsiSeq=207849&efYd=20190215#0000].
  45. Nakajima, T., and Coauthors, 2007: Overview of the atmospheric brown cloud East Asian regional experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. J. Geophys. Res., 112, D24S91, doi:10.1029/2007JD009009.
  46. NIER, and NASA. 2017. Rapid Science Synthesis Report. 35 pp, [Available at https://espo.nasa.gov/sites/default/files/documents/KORUS-AQ-RSSR.pdf] (in Korean).
  47. Noh, Y. M., H.-L. Lee, and D. Muller, 2010: Investigation of source dependent optical and microphysical characteristics of aerosol using multi-wavelength raman lidar in Anmyun, Korea. J. Korean Soc. Atmos. Environ., 26, 554-566, doi:10.5572/KOSAE.2010.26.5.554.
  48. Pilat, M. J., and R. J. Charlson, 1966: Theoretical and optical studies of humidity effects on the size distribution of hygroscopic aerosol. J. Rech. Atmos., 1, 165-170.
  49. Qu, W. J., J. Wang, X. Y. Zhang, D. Wang, and L. F. Sheng, 2015: Influence of relative humidity on aerosol composition: impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmos. Res., 153, 500-511, doi:10.1016/j.atmosres.2014.10.009.
  50. Qu, W. J., J. Wang, X. Zhang, L. Sheng, and W. Wang, 2016: Opposite seasonality of the aerosol optical depth and the surface particulate matter concentration over the north China Plain. Atmos. Environ., 127, 90-99, doi:10.1016/j.atmosenv.2015.11.061.
  51. Russell, P. B., and Coauthors, 2010: Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys., 10, 1155-1169, doi:10.5194/acp-10-1155-2010.
  52. Schmeisser, L., and Couathors, 2017: Classifying aerosol type using in situ surface spectral aerosol optical properties. Atmos. Chem. Phys., 17, 12097-12120, doi:10.5194/acp-17-12097-2017.
  53. Schuster, G. L., O. Dubovik, and B. N. Holben, 2006: Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res., 111, D07207, doi:10.1029/2005JD006328.
  54. Seo, S., J. Kim, H. Lee, U. Jeong, W. Kim, B. N. Holben, S.-W. Kim, C. H. Song, and J. H. Lim, 2015: Estimation of PM10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign. Atmos. Chem. Phys., 15, 319-334, doi:10.5194/acp15-319-2015.
  55. Shin, S.-K., M. Tesche, Y. Noh, and D. Muller, 2019: Aerosol-type classification based on AERONET version 3 inversion products. Atmos. Meas. Tech., 12, 3789-3803, doi:10.5194/amt-12-3789-2019.
  56. Sinyuk, A., and Coauthors, 2007: Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite. Remote Sens. Env., 107, 90-108, doi:10.1016/j.rse.2006.07.022.
  57. Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Env., 73, 337-349, doi:10.1016/S0034-4257(00)00109-7.
  58. Sun, Y. L., Z. F. Wang, P. Q. Fu, Q. Jiang, T. Yang, J. Li, and X. L. Ge, 2013: The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ., 77, 927-934, doi:10.1016/j.atmosenv.2013.06.019.
  59. Titos, G., H. Lyamani, A. Cazorla, M. Sorribas, I. Foyo-Moreno, A. Wiedensohler, and L. Alados-Arboledas, 2014a: Study of the relative humidity dependence of aerosol light-scattering in southern Spain. Tellus, Ser. B, 66, 24536, doi:10.3402/tellusb.v66.24536.
  60. Titos, G., A. Jefferson, P. J. Sheridan, E. Andrews, H. Lyamani, L. Alados-Arboledas, and J. A. Ogren, 2014b: Aerosol light-scattering enhancement due to water uptake during the TCAP campaign. Atmos. Chem. Phys., 14, 7031-7043, doi:10.5194/acp-14-7031-2014.
  61. Wang, Y., and Coauthors, 2011: Seasonal variations in aerosol optical properties over China. J. Geophys. Res., 116, D18209, doi:10.1029/2010JD015376.
  62. Wu, Y., J. Zhu, H. Che, X. Xia, and R. Zhang, 2015: Column-integrated aerosol optical properties and direct radiative forcing based on sun photometer measurements at a semi-arid rural site in Northeast China. Atmos. Res., 157, 56-65, doi:10.1016/j.atmosres.2015.01.021.
  63. Xia, X. A., H. B. Chen, P. C. Wang, W. X. Zhang, P. Goloub, B. Chatenet, T. F. Eck, and B. N. Holben, 2006: Variation of column-integrated aerosol properties in a Chinese urban region. J. Geophys. Res. Atmos., 111, D05204, doi:10.1029/2005JD006203.
  64. Yu, X. N., B. Zhu, and M. G. Zhang, 2009: Seasonal variability of aerosol optical properties over Beijing. Atmos. Environ., 43, 4095-4101, doi:10.1016/j.atmosenv.2009.03.061.