DOI QR코드

DOI QR Code

Evaluating internal exposure due to intake of 131I at a nuclear medicine centre of Dhaka using bioassay methods

  • Sharmin Jahan (Department of Nuclear Engineering, University of Dhaka) ;
  • Jannatul Ferdous (Health Physics Division, AECD, BAEC) ;
  • Md Mahidul Haque Prodhan (Department of Nuclear Engineering, University of Dhaka) ;
  • Ferdoushi Begum (National Institute of Nuclear Medicine and Allied Sciences, BAEC)
  • 투고 : 2023.10.31
  • 심사 : 2024.01.09
  • 발행 : 2024.06.25

초록

Handling of radioisotopes may cause external and internal contamination to occupational workers while using radiation for medical purposes. This research aims to monitor the internal hazard of occupational workers who handle 131I. Two methods are used: in vivo or direct method and in vitro or indirect method. The in vivo or direct method was performed by assessing thyroid intake with a thyroid uptake monitoring machine. The in vitro or indirect method was performed by assessing urine samples with the help of a gamma-ray spectroscopy practice using a High-Purity Germanium (HPGe) Detector. In this study, fifty-nine thyroid counts and fifty-nine urine samples were collected from seven occupational workers who were in charge of 131I at the National Institute of Nuclear Medicine and Allied Sciences (NINMAS), Dhaka. The result showed that the average annual effective dose of seven workforces from thyroid counts were 0.0208 mSv/y, 0.0180 mSv/y, 0.0135 mSv/y, 0.0169 m Sv/y, 0.0072 mSv/y, 0.0181 mSv/y, 0.0164 mSv/y and in urine samples 0.0832 mSv/y, 0.0770 mSv/y, 0.0732 mSv/y, 0.0693 mSv/y, 0.0715 mSv/y, 0.0662 mSv/y, 0.0708 mSv/y.The total annual effective dose (in vivo and in vitro method) was found among seven workers in average 0.1039 mSv/y, 0.0950 mSv/y, 0.0868 mSv/y, 0.0862 mSv/y, 0.0787 mSv/y, 0.0843 mSv/y, 0.0872 mSv/y. Following the rules of the International Commission on Radiological Protection (ICRP), the annual limit of effective dose for occupational exposure is 20 mSv per year and the finding values from this research work are lesser than this safety boundary.

키워드

과제정보

We acknowledge the Nuclear Radiation Research Laboratory at the Department of Nuclear Engineering, University of Dhaka, Bangladesh where we got scope to use HPGe detector for training purposes and experiments. We are also thankful to the Health Physics Division, AECD, BAEC, Bangladesh and the National Institute of Nuclear Medicine and Allied Sciences, BAEC, Bangladesh for experimenting with different radiation detectors and data collection.

참고문헌

  1. R. Zimmermann, Nuclear medicine, what for?, in: Nuclear Medicine Radioactivity for Diagnosis and Therapy France: EDP Sciences, 2006, pp. 9-23.
  2. J Nuyts, "Nuclear medicine technology and technniques", 2nd chapter, Leuven, PP 5, Accessed at: May 20, 2023 [Online] Available at: https://perswww.kuleuven.be/~u0015224/cursus/cursus_nucleo.pdf.
  3. T. Francis Budinger, T. Jones, History of Nuclear Medicine and Molecular Imaging in Comprehensive Biomedical Physics, 2014, pp. 1-37, https://doi.org/10.1016/B978-0-444-53632-7.00101-5.
  4. E.A. Lucena, et al., Evaluation of internal exposure of nuclear medicine staff through in vivo and in vitro bioassay techniques, Radiat. Protect. Dosim. 127 (2007) 465-468, https://doi.org/10.1093/rpd/ncm365.
  5. A. Aamry, et al., Evaluation of the annual occupational effective doses in a SPECT/CT department, Appl. Radiat. Isot. 181 (2022), https://doi.org/10.1016/j.apradiso.2022.110097.
  6. D. Adliene, et al., Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers, Environ. Res. 183 (2020), https://doi.org/10.1016/j.envres.2020.109144.
  7. E. Borkowska, et al., 99mTc internal contaminations measurements among nuclear medicine medical personnel during ventilation - perfusion SPECT lung scans, Radiat. Environ. Biophys. 60 (2021) 389-394, https://doi.org/10.1007/s00411-021-00905-x.
  8. Al-Mohammed, et al., Occupational exposure and radiobiological risk from thyroid radioiodine therapy in Saudi Arabia, Sci. Rep. 11 (2021), https://doi.org/10.1038/s41598-021-93342-1.
  9. M. Alkhorayef, et al., Assessment of occupational exposure and radiation risks in nuclear medicine departments, Radiat. Phys. Chem. 170 (2020), https://doi.org/10.1016/j.radphyschem.2019.108529.
  10. G. Hwan Jeong, et al., Estimation of concentrations and committed effective dose from urine samples of nuclear medicine workers in korea due to inhalation of 131I, Nucl. Sci. Technol. 1 (2011) 541-544.
  11. M.V.S. Vidal, et al., A methodology for auto-monitoring of internal contamination by 131I in nuclear medicine workers, Radiat. Protect. Dosim. 125 (2007) 483-487, https://doi.org/10.1093/rpd/ncm151.
  12. R. Kol, O. Pelled, et al., The interference of medical radionuclides with occupational in vivo gamma spectrometry, Health Phys.: The Radiation Safety J. 84 (2003) 756-763, https://doi.org/10.1097/00004032-200306000-00008.
  13. Gauri S. Pant, et al., Finger doses for staff handling radiopharmaceuticals in nuclear medicine, J. Nucl. Med. Technol. 34 (2006) 169-173. Retrived form, https://www.researchgate.net/publication/6839258_Finger_doses_for_staff_handling_radiopharmaceuticals_in_nuclear_medicine.
  14. Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear Radiological Emergency, EPR-INTERNAL CONTAMINATION, Manual for Medical Personnel, International Atomic Energy Commission, 2018.
  15. J. Ferdous, et al., Internal Radiation monitoring of occupational staff in nuclear medicine facility, Bangladesh Journal of Medical Physics 5 (2012) 163-170, https://doi.org/10.3329/bjmp.v5i1.14670.
  16. M. Shoji, T. Kondo, et al., A case study of the estimation of occupational internal dose using urinary excretion data obtained in a biomedical research facility, Health Phys. 89 (2005) 618-627, https://doi.org/10.1097/01.HP.0000171593.62623.96.
  17. Management of Persons Accidently Contaminated with Radionuclides, National Council on Radiation Protection and Measurements, NCRP, Bethesda (MD), 2008. NCRP report no. 161.
  18. Management of Persons Accidently Contaminated with Radionuclides, National Council on Radiation Protection and Measurements, NCRP, Bethesda (MD), 1979. NCRP report no. 65.
  19. Indirect Methods for Assessing Intake of Radionuclides Causing Occupational Exposure, International Atomic Energy Agency, IAEA, Vienna, 2000 safety reports series no. 18.
  20. IAEA Safety Standards for Protecting People and The Environment, Rsdiation Protection and Safety of Radiation Sources: INTERNATIONAL BASIC SAFETY STANDARDS, General Safety Requirements Part 3 No. GSR Part 3.
  21. J.K. Shultis, R.E. Faw, Fundamentals of Nuclear Science & Engineering, third ed., Marcel Dekker Inc., New York, 2002 (Chapter 14).
  22. Nirmal Singh (Ed.), Radioisotopes - Applications In Bio-Medical Science, IntechOpen, Bangalore, India, Nov 2011. Chapter one, PP 5-6.
  23. G.T. Seaborg, J.T. Ramey, G.F. Tape, W.E. Johnson, Radioisotopes In Medicine, Diagnosis, US Atomic Energy Commission, 2015, pp. 18-19 [Online] Retrived at: https://www.gutenberg.org/files/49377/49377-h/49377-h.htm. (Accessed 5 June 2023).
  24. S. Woodings, Radiation protection recommendations for I-131 thyrotoxicosis, thyroid cancer and phaeochromocytoma patients, Australasian Physics and Engineering Sciences in Medicine 27 (2004) 118-128, https://doi.org/10.1007/BF03178671.
  25. R.L. Murray, "Nuclear Energy: an Introduction to the Concepts Systems and Applications of Nuclear Processes", sixth ed., United Kingdom, Elsevier, 2008, p. 270 (Chapter 18).
  26. K. Brudecki, A. Kluczewska-Galka, P. Zagrodzki, B. Jarzab, K. Gorzkiewicz, T. Mroz, 131I thyroid activity and committed dose assessment among family members of patients treated with radioactive iodine, Radiat. Environ. Biophys. 59 (2020) 559-564, https://doi.org/10.1007/s00411-020-00860-z.
  27. P. Kuanrakcharoen, Radioiodine (1-131) dose for the treatment of hyperthyroidism in rajavithi hospital, J. Med. Assoc. Thai. 99 (2016). Retrived at: https://pubmed.ncbi.nlm.nih.gov/27266226/.
  28. E. K Alexander, et al., High dose of (131)I therapy for the treatment of hyperthyroidism caused by Graves' disease, J. Clin. Endocrinol. Metab. 87 (2002) 1073-1077, https://doi.org/10.1210/jcem.87.3.8333.
  29. K. Brudecki, et al., Measurement of 131I activitry in thyroid of nuclear medical staff and internal dose assessment in a Polish nuclear medical hospital, Radiat. Environ. Biophys. 56 (2017) 19-26, https://doi.org/10.1007/s00411-016-0674-1.
  30. S. C Werner, Radioactive iodine, I-131, in the treatment of hyperthyroidism, Am. J. Med. 7 (1949) 731-740, https://doi.org/10.1016/0002-9343(49)90411-8.
  31. B. Griciene, et al., The overview of internal exposure monitoring in Lithuania, Radiat. Protect. Dosim. 127 (2007) 398-401, https://doi.org/10.1093/rpd/ncm406.
  32. M.H. Shubho, et al., Individual monitoring of internal exposure for nuclear medicine workers in NINMAS through in-vitro bioassay techniques, Bangladesh J. Nucl. Med. 22 (2019), https://doi.org/10.3329/bjnm.v22i2.51763.
  33. S.F. Barrington, Radiation dose rates from patients receiving iodine-131 therapy for carcinoma of the thyroid, Eur. J. Nucl. Med. 23 (1996) 123-130, https://doi.org/10.1007/BF01731834.
  34. G.S. Pant, Radiation dose to family members of hyperthyroidism and thyroid cancer patients treated with 131I, Radiat. Protect. Dosim. 118 (2006) 22-27, https://doi.org/10.1093/rpd/nci337.
  35. B. Liu, et al., Thyroid cancer: radiation safety precautions in 131I therapy based on actual biokinetic measurements, Radiology 273 (2014) 211-219, https://doi.org/10.1210/jc.2015-1682.
  36. A. Al-Abdulsalam, et al., Occupational radiation exposure among the staff of departments of nuclear medicine and diagnostic radiology in Kuwait, Med. Princ. Pract. 23 (2014) 129-133, https://doi.org/10.1159/000357123.
  37. H. Piwowarska-Bilska, et al., Occupational exposure at the Department of Nuclear Medicine as a work environment: a 19-year follow-up, Pol. J. Radiol. 76 (2011) 18-21. Retrived at: https://pubmed.ncbi.nlm.nih.gov/22802825/.
  38. T. Bayram, A.H. Yilmaz, M. Demir, B. Sonmez, et al., Radiation dose to technologists per nuclear medicine examination and estimation of annual dose, J. Nucl. Med. Technol. 39 (2011) 55-59, https://doi.org/10.2967/jnmt.110.080358.
  39. J. Yoo, et al., Radiobioassay performance evaluation of urine and faeces samples for radiation emergency preparedness, J. Nucl. Sci. Technol. 53 (2016) 1742-1748, https://doi.org/10.1080/00223131.2016.1153437.
  40. L.D. Marinelli, et al., Dosage determination with radioactive isotopes; practical considerations in therapy and protection, Am. J. Roentgenol. Radium Ther. 59 (1948) 260-281, https://doi.org/10.1172/jci102194.
  41. G.F. Knoll F, Radiation Detection and Measurement, second ed., John Wiley and sons Inc., USA, 1989.
  42. Measurement of Radionuclides in Food and the Environment, Technical Reports Series No. 295, International Atomic Energy Agency Vienna, 1989.
  43. H.E. Johns, J.R. Cunningham, The Physics of Radiology, fourth ed., C. Thomas Publisher, USA, 1983.
  44. Individual Monitoring for Internal Exposure of Worker, International Commission of Radiological Protection (ICRP)-78, Pergamon, 1997.
  45. Human Respiratory Tract Model for Radiological Protection, International Commission of Radiological Protection (ICRP)- 66, Pergamon, 1994.
  46. Limits for Intakes of Radionuclides by Workers, International Commission of Radiological Protection (ICRP)-30, Pergamon, 1979.
  47. Individual Monitoring for Intakes of Radionuclides by Workers: Design and Interpretation, International Commission of Radiological Protection (ICRP)- 54, Pergamon, 1989.
  48. Dose Coefficients for Intakes of Radionuclides by Workers, International Commission of Radiological Protection (ICRP)-68, Pergamon, 1994.
  49. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103, Elsevier, 2007.
  50. M.H. Nassef, A.A. Kinsara, Occupational radiation dose for medical workers at university hospital, J. Taibah Univ. Sci. 11 (2017), https://doi.org/10.1016/j.jtusci.2017.01.003.
  51. V. Samerdokiene, V. Atkocius, J. Kurtinaitis, K.P. Valuckas, Occupational exposure of medical radiation workers in lithunia, 1950-2003, Radiat. Protect. Dosim. 130 (2008) 239-243, https://doi.org/10.1093/rpd/ncm490.
  52. Radiation, sources and effects of ionizing, United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), vol. I, United Nations Sales Publication, New York, 2000.
  53. Md Samiul Ehsan, Md Faisal Rahman, Nafisa Tabassum, Md Mahidul Haque Prodhan, Shikha Pervin, M.M. Mahfuz Siraz, A.K.M. Mizanur Rahman, Selina Yeasmin, Syeda Ferdous Mahal, The activity concentration of radionuclides (226Ra, 232Th and 40K) in soil samples and associated health hazards in natore, kushtia and pabna district of Bangladesh, J. Bangladesh Acad. Sci. 43 (2) (2019) 169-180, https://doi.org/10.3329/jbas.v43i2.45738.
  54. Mahadee Hasan Shubho, Md Mahidul Haque Prodhan, Md Hossain Sahadath Ferdoushi Begum, Md Zakir Hossain, Jannatul Ferdous, Individual monitoring of internal exposure for nuclear medicine workers in NINMAS through in-vitro bioassay techniques, Bangladesh J. Nucl. Med. 22 (2) (July 2019).
  55. Mahidul Haque Prodhan, Hasan Talukder, Fazlul Huq, Zahid Hasan Mahmood, Study of the effect of energy window width and peak shift on SPECT images to evaluate false diagnosis, Iran. J. Nucl. Med. 24 (2) (2016) 76-84. Published: July, 2016, http://irjnm.tums.ac.ir.