DOI QR코드

DOI QR Code

Behavior of structures repaired by hybrid composite patches during the aging of the adhesive

  • Received : 2024.03.29
  • Accepted : 2024.06.28
  • Published : 2024.07.25

Abstract

The objective of this study is to analyze, using the finite element method, the durability of damaged and repaired structures under the effect of mechanical loading coupled with environmental conditions (water absorption and/or temperature). The study is based on the hybrid patch repair technique, considering several parameters based on the J integral to observe the behavior of the adhesive in transferring load from a damaged plate to the repair patch. The results clearly show that water absorption and increased temperature cause degradation of the mechanical properties of the adhesive, leading to an increase in its plasticization, which is beneficial for the assembly's strength. However, the degradation of the adhesive's properties due to aging in the repair results in poor load transfer from the damaged area to the patch. The findings of this study allowed the authors to conclude that the [0°]8 sequence consistently offers the best performance, with the lowest J integral values and superior crack resistance. The lowest the J integral for the [0°]8 stacking sequence is typically 3-7% lower than that of the [0/-45/45/90]S and [0/-45/90/45]S sequences at elevated temperatures. At 60℃, the J integral increases by approximately 3-6% compared to 40℃ and 20, depending on the aging duration and stacking sequences.

Keywords

References

  1. Abdelghany, A.W., Taha, T. and Ebeid, S. (2016), "Failure prediction of fiber reinforced polymer pipes using FEA", Int. J. Eng. Res., 4(2), 115-120.
  2. Achache, H., Boutabout, B. and Ouinas, D. (2013), "Mechanical behavior of laminated composites with circular holes", Eng. Mater., 550, 1-8. https://doi.org/10.4028/www.scientific.net/KEM.550.1.
  3. Akram, A., Zahiraniza M. and Albarody, Th.M.B. (2020), "Burst capacity of pipe under corrosion defects and repaired with thermosetting liner", Steel Compos. Struct., 35(2), 171-186. https://doi.org/10.12989/scs.2020.35.2.171.
  4. Aminallah, S., Fekih, S.M. and Sahli, A. (2023), "Optimization of scarf patch stacking sequences using the design of experiments method", Adv. Aircraft Spacecraft Sci., 10(4), 335-346. https://doi.org/10.12989/aas.2023.10.4.335.
  5. Amini, A., Mohammadimehr, M. and Faraji, A. (2020), "Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm", Smart Struct. Syst., 26(6), 721-733. https://doi.org/10.12989/sss.2020.26.6.721.
  6. Beloufa, H.I., Ouinas, D., Tarfaoui. M. and Benderdouche, N. (2016), "Effect of stacking sequence of the bonded composite patch on repair performance", Struct. Eng. Mech., 57(2), 295-313. http://dx.doi.org/10.12989/sem.2016.57.2.295.
  7. Ben Henni, M.A., Abbes, B., Hassaine Daouadji, T., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. https://doi.org/10.12989/scs.2021.39.6.751.
  8. Berrahou, M., Amari, Kh. and Belkaddour L. (2023), "Effect of the fibers orientation of the different types of composite plates notched of U-shape repaired by composite patch", Mater. Res., 26, e20220302. https://doi.org/10.1590/1980-5373-MR-2022-0302.
  9. Brito, R.F.N., Campilho, R.D.S.G., Moreira, R.D.F. and SanchezArce, I.J. (2020), "Material and adhesive effect in adhesivelybonded composite stepped-lap joints", Proc. IMechE Part G: J. Aerosp. Eng., 234(13), 1967-1979. https://doi.org/10.1177/0954410020932014.
  10. Chen, M. and Das, S. (2009), "Experimental Study on repair of corroded steel beam using CFRP", Steel Compos. Struct., 9(2), 103-118. https://doi.org/10.12989/scs.2009.9.2.103.
  11. Cheng, X., Zhang, J., Cheng, Y., Guo, X. and Huang, W. (2020), "Effect of curing condition on mechanical properties of scarfrepaired composite laminate", Steel Compos. Struct., 37(4), 419-429. https://doi.org/10.12989/scs.2020.37.4.419.
  12. Cheng, X., Zhang, J., Zhang, Ji., Liu, P., Cheng, Y. and Xu, Y. (2018), "Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging", Steel Compos. Struct., 26(3), 265-272. https://doi.org/10.12989/scs.2018.26.3.265.
  13. Christian, T.F. Jr., Hammond, D.O. and Cochran, J.B. (1992), "Composite material repairs to metallic airframe components", J. Aircraft, 29(3), 46185. https://doi.org/10.2514/3.46185.
  14. Kamarian, S. and Song, J. (2023), "Thermal buckling of rectangular sandwich plates with advanced hybrid SMA/CNT/graphite/epoxy composite face sheets", Adv. Nano Res., 14(3), 261-271. https://doi.org/10.12989/anr.2023.14.3.261.
  15. Laib, S., Meftah, S.A., Youzera, H., Ziane, N. and Tounsi, A. (2021), "Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer", Comput. Concrete, 27(3), 253-268. https://doi.org/10.12989/cac.2021.27.3.253.
  16. Lakshmipathi, J and Vasudevan, R. (2019), "Dynamic characterization of a CNT reinforced hybrid uniform and nonuniform composite plates", Steel Compos. Struct., 30(1), 31-46. https://doi.org/10.12989/scs.2019.30.1.031.
  17. Mai, S.H., Tran, V.L., Nguyen, Nguyen, V.T. and Thai, D.K. (2022), "Patch loading resistance prediction of steel plate girders using a deep artificial neural network and an interiorpoint algorith", Steel Compos. Struct., 45(2), 159-173. https://doi.org/10.12989/scs.2022.45.2.159.
  18. Mathias, J.D., Balandraud, X. and Grediac, M. (2006), "Applying a generic algorithm to the optimization of composite patches", Comput. Struct., 84(12), 823-834. https://doi.org/10.1016/j.compstruc.2005.12.004.
  19. Moreira, R.D.F., De Moura, M.F.S.F., Silva, F.G.A. and Reis, J.P. (2020), "High-cycle fatigue analysis of adhesively bonded composite scarf repairs", Compos. Part B, 190, 170900. https://doi.org/10.1016/j.compositesb.2020.107900.
  20. Setvati, M.R. and Mustaffa, Z. (2018), "Rehabilitation of notched circular hollow sectional steel beam using CFRP Patch", Steel Compos. Struct., 26(2), 151-161. https://doi.org/10.12989/scs.2018.26.2.151.
  21. Tahar, T., Djeghader, D. and Redjel, B. (2022), "Mechanical properties and statistical analysis of the Charpy impact test using the Weibull distribution in jute-polyester and glasspolyester composites", Frattura ed Integrita Strutturale, 62, 326-335. https://doi.org/10.3221/IGF-ESIS62.23.
  22. Toudeshky, H.H., Sadeghi, G. and Daghyani, H.R. (2005), "Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glassepoxy composite patches", Compos. Struct., 71(3-4), 401-406. https://doi.org/10.1016/j.compstruct.2005.09.032.
  23. Umamaheswar, T.V.R.S. and Singh, R. (1999), "Modeling of patch repair to a thin cracked sheet", Eng. Fract. Mech., 62(2-3), 267-289. https://doi.org/10.1016/S0013-7944(98)00088-5.
  24. Yang, Y., Xue, Y., Yu, Y., Liu, R.Y. and Ke, S. (2017), "Study of the design and mechanical performance of a GFRP-concrete composite deck", Steel Compos. Struct., 24(6), 679-688. https://doi.org/10.12989/scs.2017.24.6.679.