DOI QR코드

DOI QR Code

Methanol-involved heterogeneous transformation of ginsenoside Rb1 to rare ginsenosides using heteropolyacids embedded in mesoporous silica with HPLC-MS investigation

  • Mengya Zhao (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Yusheng Xiao (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Yanyan Chang (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Lu Tian (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Yujiang Zhou (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Shuying Liu (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Huanxi Zhao (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Yang Xiu (Jilin Ginseng Academy, Changchun University of Chinese Medicine)
  • Received : 2023.08.31
  • Accepted : 2024.01.26
  • Published : 2024.07.01

Abstract

Background: The biological activity and pharmacological effects of rare ginsenosides have been proven to be superior to those of the major ginsenosides, but they are rarely found in ginseng. Methods: Ginsenoside Rb1 was chemically transformed with the involvement of methanol molecules by a synthesized heterogeneous catalyst 12-HPW@MeSi, which was obtained by the immobilization of 12-phosphotungstic acid on a mesoporous silica framework. High-performance liquid chromatography coupled with mass spectrometry was used to identify the transformation products. Results: A total of 18 transformation products were obtained and identified. Methanol was found to be involved in the formation of 8 products formed by the addition of methanol molecules to the C-24 (25), C-20 (21) or C-20 (22) double bonds of the aglycone. The transformation pathways of ginsenoside Rb1 involved deglycosylation, addition, elimination, cycloaddition, and epimerization reactions. These pathways could be elucidated in terms of the stability of the generated carbenium ion. In addition, 12-HPW@MeSi was able to maintain a 60.5% conversion rate of Rb1 after 5 cycles. Conclusion: Tandem and high-resolution mass spectrometry analysis allowed rapid and accurate identification of the transformation products through the characteristic fragment ions and neutral loss. Rare ginsenosides with methoxyl groups grafted at the C-25 and C-20 positions were obtained for the first time by chemical transformation using the composite catalyst 12-HPW@MeSi, which also enabled cyclic heterogeneous transformation and facile centrifugal separation of ginsenosides. This work provides an efficient and recyclable strategy for the preparation of rare ginsenosides with the involvement of organic molecules.

Keywords

Acknowledgement

This work was financially supported by the Science and Technology Development Plan Project of Jilin Province, China (No. 20210204098YY and YDZJ202201ZYTS261) and the Scientific Research Project of Jilin Provincial Education Department, China (No. JJKH20241090KJ).

References

  1. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39(4):287-98.  https://doi.org/10.1016/j.jgr.2014.12.005
  2. Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician 2003;68(8):1539-42. 
  3. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58(11):1685-93.  https://doi.org/10.1016/S0006-2952(99)00212-9
  4. Piao XM, Zhang H, Kang JP, Yang DU, Li YL, Pang SF, Jin YP, Yang DC, Wang YP. Advances in saponin diversity of Panax ginseng. Molecules 2020;25(15):3452. 
  5. Angelova N, Kong HW, Van Der Heijden R, Yang SY, Choi YH, Kim HK, Wang M, Hankemeier T, Van Der Greef J, Xu G, et al. Recent methodology in the phytochemical analysis of ginseng. Phytochem Anal 2008;19(1):2-16.  https://doi.org/10.1002/pca.1049
  6. Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011;72(8):689-99.  https://doi.org/10.1016/j.phytochem.2011.02.012
  7. Son JW, Kim HJ, Oh DK. Ginsenoside Rd production from the major ginsenoside Rb-1 by beta-glucosidase from Thermus caldophilus. Biotechnol Lett 2008;30(4):713-6.  https://doi.org/10.1007/s10529-007-9590-4
  8. Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg(1) from Panax notoginseng in rats. J Ethnopharmacol 2003;84(2-3):187-92.  https://doi.org/10.1016/S0378-8741(02)00317-3
  9. Noh KH, Son JW, Kim HJ, Oh DK. Ginsenoside compound K production from ginseng root extract by a Thermostable beta-glycosidase from sulfolobus solfataricus. Biosci Biotechnol Biochem 2009;73(2):316-21.  https://doi.org/10.1271/bbb.80525
  10. Paek IP, Moon Y, Kim J, Ji HY, Kim SA, Sohn DH, Kim JB, Lee HS. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm Drug Dispos 2006;27(1):39-45.  https://doi.org/10.1002/bdd.481
  11. Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim YJ, Veerappan K, Yang DU, Yang DC. Stimulative effect of ginsenosides rg5:Rk1 on murine osteoblastic MC3T3-E1 cells. Phytotherapy Research 2014;28(10):1447-55.  https://doi.org/10.1002/ptr.5146
  12. Lee SM. Anti-inflammatory effects of ginsenosides Rg5, Rz1, and Rk1: inhibition of TNF-α-induced NF-κB, COX-2, and iNOS transcriptional expression. Phytotherapy Research 2014;28(12):1893-6.  https://doi.org/10.1002/ptr.5203
  13. Choi P, Park JY, Kim T, Park SH, Kim HK, Kang KS, Ham J. Improved anticancer effect of ginseng extract by microwave-assisted processing through the generation of ginsenosides Rg3, Rg5 and Rk1. Journal of Functional Foods 2015;14:613-22.  https://doi.org/10.1016/j.jff.2015.02.038
  14. Ryoo N, Rahman MA, Hwang H, Ko SK, Nah SY, Kim HC, Rhim H. Ginsenoside Rk1 is a novel inhibitor of NMDA receptors in cultured rat hippocampal neurons. Journal of Ginseng Research 2020;44(3):490-5.  https://doi.org/10.1016/j.jgr.2019.04.002
  15. Shao JJ, Zheng XY, Qu LL, Zhang H, Yuan HF, Hui JF, Mi Y, Ma P, Fan DD. Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the GABAergic/serotoninergic signaling pathway in a rodent model. Food & Function 2020;11(2):1245-57.  https://doi.org/10.1039/C9FO02248A
  16. Simu SY, Ahn S, Castro-Aceituno V, Yang DC. Ginsenoside Rg5: Rk1 exerts an antiobesity effect on 3T3-L1 cell line by the downregulation of PPARγ and CEBPα. Iranian Journal of Biotechnology 2017;15(4):252-9.  https://doi.org/10.15171/ijb.1517
  17. Shin KC, Oh DK. Characterization of a novel recombinant beta-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides. J Biotechnol 2014;172:30-7.  https://doi.org/10.1016/j.jbiotec.2013.11.026
  18. Quan K, Liu Q, Wan JY, Zhao YJ, Guo RZ, Alolga RN, Li P, Qi LW. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci Rep 2015;5:8598. 
  19. Bai YP, Ganzle MG. Conversion of ginsenosides by Lactobacillus plantarum studied by liquid chromatography coupled to quadrupole trap mass spectrometry. Food Res Int 2015;76:709-18.  https://doi.org/10.1016/j.foodres.2015.07.040
  20. Ye L, Zhou CQ, Zhou W, Zhou P, Chen DF, Liu XH, Shi XL, Feng MQ. Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229-7. Bioresour Technol 2010;101(20):7872-6.  https://doi.org/10.1016/j.biortech.2010.04.102
  21. Wang JR, Yau LF, Zhang R, Xia Y, Ma J, Ho HM, Hu P, Hu M, Liu L, Jiang ZH. Transformation of ginsenosides from notoginseng by artificial gastric juice can increase cytotoxicity toward cancer cells. J Agric Food Chem 2014;62(12):2558-73.  https://doi.org/10.1021/jf405482s
  22. Zhang FX, Tang SJ, Zhao L, Yang XS, Yao Y, Hou ZH, Xue P. Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment. J Ginseng Res 2021;45(1):163-75.  https://doi.org/10.1016/j.jgr.2020.01.003
  23. Yue D, Lei J, Peng Y, Li J, Du X. Hierarchical ordered meso/macroporous H3PW12O40/SiO2 catalysts with superior oxidative desulfurization activity. J Porous Mater 2018;25(3):727-34.  https://doi.org/10.1007/s10934-017-0486-y
  24. Tayebee R, Lee AF, Frattini L, Rostami S. H3PW12O40/SBA-15 for the solventless synthesis of 3-substituted indoles. Catalysts 2019;9(5):409. 
  25. Liu Y, Gao W, Zhan JJ, Bao YM, Cao RR, Zhou H, Liu LF. One-pot synthesis of Ag-H3PW12O40-LiCoO2 composites for thermal oxidation of airborne benzene. Chem Eng J 2019;375:121956. 
  26. Naseri E, Khoshnavazi R. Sandwich type polyoxometalates encapsulated into the mesoporous material: synthesis, characterization and catalytic application in the selective oxidation of sulfides. RSC Adv 2018;8(49):28249-60.  https://doi.org/10.1039/C8RA03659D
  27. Ai LM, Zhang DF, Wang Q, Yan JS, Wu QY. Photocatalytic degradation of textile dye X-3B using TiW11Ti/SiO2 hybrid materials. Catal Commun 2019;126:10-4.  https://doi.org/10.1016/j.catcom.2019.04.007
  28. Nikulshina MS, Blanchard P, Mozhaev A, Lancelot C, Griboval-Constant A, Fournier M, Payen E, Mentre O, Briois V, Nikulshin PA, et al. Molecular approach to prepare mixed MoW alumina supported hydrotreatment catalysts using H4SiMonW12-nO40 heteropolyacids. Catal Sci Technol 2018;8(21):5557-72.  https://doi.org/10.1039/C8CY00672E
  29. Micek-Ilnicka A, Gil B. Heteropolyacid encapsulation into the MOF: influence of acid particles distribution on ethanol conversion in hybrid nanomaterials. Dalton Trans 2012;41(40):12624-9.  https://doi.org/10.1039/c2dt31329d
  30. Cao J, Liu C, Wang Q, Li Y, Yu Q. A novel catalytic application of heteropolyacids: chemical transformation of major ginsenosides into rare ginsenosides exemplified by R-g1. Sci China Chem 2017;60(6):748-53.  https://doi.org/10.1007/s11426-016-0439-6
  31. Cui M, Song F, Zhou Y, Liu Z, Liu S. Rapid identification of saponins in plant extracts by electrospray ionization multi-stage tandem mass spectrometry and liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2000;14(14):1280-6.  https://doi.org/10.1002/1097-0231(20000730)14:14<1280::AID-RCM26>3.0.CO;2-C
  32. Li XQ, Yang Z, Zhang QH, Li HM. Evaluation of matrix effect in isotope dilution mass spectrometry based on quantitative analysis of chloramphenicol residues in milk powder. Anal Chim Acta 2014;807:75-83.  https://doi.org/10.1016/j.aca.2013.11.017
  33. Wu W, Sun L, Zhang Z, Guo YY, Liu SY. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Pharm Biomed Anal 2015;107:141-50.  https://doi.org/10.1016/j.jpba.2014.12.030
  34. Xie YY, Luo D, Cheng YJ, Ma JF, Wang YM, Liang QL, Luo GA. Steaming-Induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MSn-Based multicomponent quantification fingerprint. J Agric Food Chem 2012;60(33):8213-24.  https://doi.org/10.1021/jf301116x
  35. Xiu Y, Zhao HX, Gao Y, Liu WL, Liu SY. Chemical transformation of ginsenoside Re by a heteropoly acid investigated using HPLC-MSn/HRMS. New J Chem 2016;40(11):9073-80.  https://doi.org/10.1039/C6NJ01702A
  36. Yang H, Lee DY, Kang KB, Kim JY, Kim SO, Yoo YH, Sung SH. Identification of ginsenoside markers from dry purified extract of Panax ginseng by a dereplication approach and UPLC-QTOF/MS analysis. J Pharm Biomed Anal 2015;109:91-104.  https://doi.org/10.1016/j.jpba.2015.02.034
  37. Xiang Q, Lee YY, Pettersson PO, Torget R. Heterogeneous aspects of acid hydrolysis of alpha-cellulose. Appl Biochem Biotechnol 2003;105:505-14.  https://doi.org/10.1007/978-1-4612-0057-4_42
  38. Yamamoto Y, Itonaga K. Versatile friedel-crafts-type alkylation of benzene derivatives using a molybdenum complex/ortho-chloranil catalytic system. Chem Eur J 2008;14(34):10705-15.  https://doi.org/10.1002/chem.200801105
  39. Macht J, Janik MJ, Neurock M, Iglesia E. Mechanistic consequences of composition in acid catalysis by polyoxometalate Keggin clusters. J Am Chem Soc 2008;130(31):10369-79. https://doi.org/10.1021/ja803114r