DOI QR코드

DOI QR Code

Systematic exploration of therapeutic effects and key mechanisms of Panax ginseng using network-based approaches

  • Young Woo Kim (School of Korean Medicine, Dongguk University) ;
  • Seon Been Bak (School of Korean Medicine, Dongguk University) ;
  • Yu Rim Song (School of Korean Medicine, Dongguk University) ;
  • Chang-Eop Kim (School of Korean Medicine, Gachon University) ;
  • Won-Yung Lee (School of Korean Medicine, Dongguk University)
  • Received : 2023.08.14
  • Accepted : 2024.01.19
  • Published : 2024.07.01

Abstract

Background: Network pharmacology has emerged as a powerful tool to understand the therapeutic effects and mechanisms of natural products. However, there is a lack of comprehensive evaluations of network-based approaches for natural products on identifying therapeutic effects and key mechanisms. Purpose: We systematically explore the capabilities of network-based approaches on natural products, using Panax ginseng as a case study. P. ginseng is a widely used herb with a variety of therapeutic benefits, but its active ingredients and mechanisms of action on chronic diseases are not yet fully understood. Methods: Our study compiled and constructed a network focusing on P. ginseng by collecting and integrating data on ingredients, protein targets, and known indications. We then evaluated the performance of different network-based methods for summarizing known and unknown disease associations. The predicted results were validated in the hepatic stellate cell model. Results: We find that our multiscale interaction-based approach achieved an AUROC of 0.697 and an AUPR of 0.026, which outperforms other network-based approaches. As a case study, we further tested the ability of multiscale interactome-based approaches to identify active ingredients and their plausible mechanisms for breast cancer and liver cirrhosis. We also validated the beneficial effects of unreported and top-predicted ingredients, in cases of liver cirrhosis and gastrointestinal neoplasms. Conclusion: our study provides a promising framework to systematically explore the therapeutic effects and key mechanisms of natural products, and highlights the potential of network-based approaches in natural product research.

Keywords

Acknowledgement

Kim YW would like to thank to the Ph.D.'s program of Kyungpook National University for completing the thesis through this work.

References

  1. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4(11):682-90. 
  2. Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 2013;11(2):110-20. 
  3. Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Front Pharmacol 2019;10:123. 
  4. Lee WY, Lee CY, Kim YS, Kim CE. The methodological trends of traditional herbal medicine employing network pharmacology. Biomolecules 2019;9(8). 
  5. Li S, Zhang ZQ, Wu LJ, Zhang XG, Li YD, Wang YY. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol 2007;1(1):51-60. 
  6. do Valle IF, Roweth HG, Malloy MW, Moco S, Barron D, Battinelli E, Loscalzo J, Barabasi AL. Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. Nat Food 2021;2(3):143-55. 
  7. Lee WY, Lee CY, Lee JS, Kim CE. Identifying candidate flavonoids for non-Alcoholic fatty liver disease by network-based strategy. Front Pharmacol 2022;13:892559. 
  8. Bak SB, Song YR, Bae SJ, Lee WY, Kim YW. Integrative approach to uncover antioxidant properties of Bupleuri Radix and its active compounds: multiscale interactome-level analysis with experimental validation. Free Radic Biol Med 2023;199:141-53. 
  9. Wu W, Zhang Z, Li F, Deng Y, Lei M, Long H, Hou J, Wu W. A network-based approach to explore the mechanisms of Uncaria Alkaloids in treating hypertension and alleviating Alzheimer's disease. Int J Mol Sci 2020;21(5). 
  10. Zhang Y-q, Mao X, Guo Q-y, Lin N, Li S. Network pharmacology-based approaches capture essence of Chinese herbal medicines. Chinese Herbal Medicines 2016;8(2):107-16. 
  11. Ay M, Goh K-I, Cusick ME, Barabasi A-L, Vidal M. Drug-target network. Nat Biotechnol 2007;25(10):1119-27. 
  12. Hao DC, Xiao PG. Network pharmacology: a Rosetta stone for traditional Chinese medicine. Drug Dev Res 2014;75(5):299-312. 
  13. Bu D, Su Z, Zou J, Meng M, Wang C. Study of the mechanism underlying therapeutic effect of Compound Longmaining on myocardial infarction using a network pharmacology-based approach. Biomed Pharmacother 2019;118:109234. 
  14. Zhang G-b, Li Q-y, Chen Q-l, Su S-b. Network pharmacology: a new approach for Chinese herbal medicine research, Evidence-based complementary and alternative medicine 2013. 2013. 
  15. Guney E, Menche J, Vidal M, Barabasi ' A-L. Network-based in silico drug efficacy screening. Nat Commun 2016;7(1):10331. 
  16. Ruiz C, Zitnik M, Leskovec J. Identification of disease treatment mechanisms through the multiscale interactome. Nat Commun 2021;12(1):1796. 
  17. Agency EM. Herbal medicine: summary for the public - ginseng root. Panax ginseng C.A. Meyer, radix); 2014. 
  18. Yakoot M, Salem A, Helmy S. Effect of Memo®, a natural formula combination, on Mini-Mental State Examination scores in patients with mild cognitive impairment. Clin Interv Aging 2013:975-81. 
  19. Chen W, Yao P, Vong CT, Li X, Chen Z, Xiao J, Wang S, Wang Y. Ginseng: a bibliometric analysis of 40-year journey of global clinical trials. J Adv Res 2021;34:187-97. 
  20. Wei H, Wu H, Yu W, Yan X, Zhang X. Shenfu decoction as adjuvant therapy for improving quality of life and hepatic dysfunction in patients with symptomatic chronic heart failure. J Ethnopharmacol 2015;169:347-55. 
  21. Vuksan V, Sievenpiper JL. Herbal remedies in the management of diabetes: lessons learned from the study of ginseng. Nutr Metabol Cardiovasc Dis 2005;15(3):149-60. 
  22. Wu Y, Zhang F, Yang K, Fang S, Bu D, Li H, Sun L, Hu H, Gao K, Wang W. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res 2019;47(D1):D1110-7. 
  23. Park S-Y, Park J-H, Kim H-S, Lee C-Y, Lee H-J, Kang KS, Kim C-E. Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach. Journal of ginseng research 2018;42(1):98-106. 
  24. Huang Y, Fang J, Lu W, Wang Z, Wang Q, Hou Y, Jiang X, Reizes O, Lathia J, Nussinov R. A systems pharmacology approach uncovers wogonoside as an angiogenesis inhibitor of triple-negative breast cancer by targeting hedgehog signaling. Cell Chem Biol 2019;26(8):1143-58. e6. 
  25. Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M. Stitch 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 2016;44(D1):D380-4. 
  26. Chen X, Ji ZL, Chen YZ. TTD: therapeutic target database. Nucleic Acids Res 2002;30(1):412-5. 
  27. Yan D, Zheng G, Wang C, Chen Z, Mao T, Gao J, Yan Y, Chen X, Ji X, Yu J. Hit 2.0: an enhanced platform for herbal ingredients' targets. Nucleic Acids Res 2022;50 (D1):D1238-43. 
  28. Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, Cornelisse LN, Farrell RJ, Goldschmidt HL, Howrigan DP. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 2019;103(2):217-234. e4. 
  29. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498-504. 
  30. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44(W1):W90-7. 
  31. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ. The comparative toxicogenomics database: update 2019. Nucleic Acids Res 2019;47(D1):D948-54. 
  32. Lee J-H, Jang EJ, Seo HL, Ku SK, Lee JR, Shin SS, Park S-D, Kim SC, Kim YW. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chem Biol Interact 2014;224:58-67. 
  33. Levene A. Pathological factors influencing excision of tumours in the head and neck. Part I. Clin Otolaryngol Allied Sci 1981;6(2):145-51. 
  34. Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminf 2016;8:1-20. 
  35. Cui Y, Shu X-O, Gao Y-T, Cai H, Tao M-H, Zheng W. Association of ginseng use with survival and quality of life among breast cancer patients. Am J Epidemiol 2006;163(7):645-53. 
  36. Wang X, Yang Y, An Y, Fang G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother 2019;117:109086. 
  37. Lau WS, Chen WF, Chan RYK, Guo DA, Wong MS. Mitogen-activated protein kinase (MAPK) pathway mediates the oestrogen-like activities of ginsenoside Rg1 in human breast cancer (MCF-7) cells. Br J Pharmacol 2009;156(7):1136-46. 
  38. Lee YJ, Jin YR, Lim WC, Park WK, Cho JY, Jang S, Lee SK. Ginsenoside-R b1 acts as a weak phytoestrogen in MCF-7 human breast cancer cells. Arch Pharm Res (Seoul) 2003;26:58-63. 
  39. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, Baik GH, Kim DJ, Kim MJ. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. Journal of ginseng research 2016;40(3):203-10. 
  40. Ki SH, Yang JH, Ku SK, Kim SC, Kim YW, Cho IJ. Red ginseng extract protects against carbon tetrachloride-induced liver fibrosis. Journal of ginseng research 2013;37(1):45. 
  41. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017;14(7):397-411. 
  42. Inagaki Y, Okazaki I. Emerging insights into transforming growth factor β Smad signal in hepatic fibrogenesis. Gut 2007;56(2):284-92. 
  43. Ding Q, Zhu W, Diao Y, Xu G, Wang L, Qu S, Shi Y. Elucidation of the mechanism of action of ginseng against acute lung injury/acute respiratory distress syndrome by a network pharmacology-based strategy. Front Pharmacol 2021;11:611794. 
  44. Li Q-Y, Hou C-Z, Yang L-P, Chu X-L, Wang Y, Zhang P, Zhao Y. Study on the mechanism of ginseng in the treatment of lung adenocarcinoma based on network pharmacology. Evid base Compl Alternative Med 2020:2020. 
  45. Lee J, Jung E, Lee J, Huh S, Kim J, Park M, So J, Ham Y, Jung K, Hyun C-G. Panax ginseng induces human Type I collagen synthesis through activation of Smad signaling. J Ethnopharmacol 2007;109(1):29-34. 
  46. Li J, Du J, Liu D, Cheng B, Fang F, Weng L, Wang C, Ling C. Ginsenoside Rh1 potentiates dexamethasone's anti-inflammatory effects for chronic inflammatory disease by reversing dexamethasone-induced resistance. Arthritis Res Ther 2014;16(3):1-11. 
  47. Luo H, Rankin GO, Li Z, DePriest L, Chen YC. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem 2011;128(2):513-9. 
  48. Chu Y, Zhang W, Kanimozhi G, Brindha G, Tian D. Ginsenoside Rg1 induces apoptotic cell death in triple-negative breast cancer cell lines and prevents carcinogen-induced breast tumorigenesis in sprague dawley rats. Evidence-Based Complementary and Alternative Medicine 2020;8886955:1-12.