DOI QR코드

DOI QR Code

Effects of Panax species and their bioactive components on allergic airway diseases

  • Dahee Shim (Industry-Academic Cooperation Foundation, Hallym University) ;
  • Yeeun Bak (Department of Biomedical Science, Hallym University College of Medicine) ;
  • Han-Gyu Choi (Department of Microbiology and Medical Science, College of Medicine, Chungnam National University) ;
  • Seunghyun Lee (Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Sang Chul Park (Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine)
  • Received : 2023.12.28
  • Accepted : 2024.04.17
  • Published : 2024.07.01

Abstract

Panax species include Panax ginseng Meyer, Panax quinquefolium L., Panax notoginseng, Panax japonicum, Panax trifolium, and Panax pseudoginseng, which contain bioactive components (BCs) such as ginsenosides and polysaccharides. Recently, growing evidence has revealed the pharmacological effects of Panax species and their BCs on allergic airway diseases (AADs), including allergic asthma (AA) and allergic rhinitis (AR). AADs are characterized by damaged epithelium, sustained acquired immune responses with enforced Th2 responses, allergenspecific IgE production, and enhanced production of histamine and leukotrienes by activated mast cells and basophils. In this review, we summarize how Panax species and their BCs modulate acquired immune responses involving interactions between dendritic cells and T cells, reduce the pro-inflammatory responses of epithelial cells, and reduce allergenic responses from basophils and mast cells in vitro. In addition, we highlight the current understanding of the alleviative effects of Panax species and their BCs against AA and AR in vivo. Moreover, we discuss the unmet needs of research and considerations for the treatment of patients to provide basic scientific knowledge for the treatment of AADs using Panax species and their BCs.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2020R1I1A3067369). This research was supported by Hallym University Research Fund and Korean Society of Ginseng in 2023.

References

  1. Gevaert P, Wong K, Millette LA, Carr TF. The role of IgE in Upper and lower airway disease: more than just allergy. Clin Rev Allergy Immunol 2022;62:200-15.
  2. Dullaers M, De Bruyne R, Ramadani F, Gould HJ, Gevaert P, Lambrecht BN. The who, where, and when of IgE in allergic airway disease. J Allergy Clin Immunol 2012;129:635-45.
  3. Zeng Z, Huang H, Zhang J, Liu Y, Zhong W, Chen W, Lu Y, Qiao Y, Zhao H, Meng X, et al. HDM induce airway epithelial cell ferroptosis and promote inflammation by activating ferritinophagy in asthma. FASEB J. 2022;36:e22359.
  4. Morianos I, Semitekolou M. Dendritic cells: critical regulators of allergic asthma. Int J Mol Sci 2020;21.
  5. Froidure A, Shen C, Pilette C. Dendritic cells revisited in human allergic rhinitis and asthma. Allergy 2016;71:137-48.
  6. Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023;14:1113100.
  7. Kim JH, Jang YJ. Role of natural killer cells in airway inflammation. Allergy Asthma Immunol Res 2018;10:448-56.
  8. Park SC, Kim H, Bak Y, Shim D, Kwon KW, Kim CH, Yoon JH, Shin SJ. An alternative dendritic cell-induced murine model of asthma exhibiting a robust Th2/Th17-skewed response. Allergy Asthma Immunol Res 2020;12:537-55.
  9. Lee SP, Shin YS, Kang SY, Kim TB, Lee SM. Recent advances in allergen-specific immunotherapy in humans: a systematic review. Immune Netw 2022;22:e12.
  10. Calzetta L, Matera MG, Coppola A, Rogliani P. Prospects for severe asthma treatment. Curr Opin Pharmacol 2021;56:52-60.
  11. Akenroye AT, Segal JB, Zhou G, Foer D, Li L, Alexander GC, Keet CA, Jackson JW. Comparative effectiveness of omalizumab, mepolizumab, and dupilumab in asthma: a target trial emulation. J Allergy Clin Immunol 2023;151:1269-76.
  12. Sim S, Choi Y, Park HS. Immunologic basis of type 2 biologics for severe asthma. Immune Netw 2022;22:e45.
  13. Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol 2001;33: 289-94.
  14. Conde E, Bertrand R, Balbino B, Bonnefoy J, Stackowicz J, Caillot N, Colaone F, Hamdi S, Houmadi R, Loste A, et al. Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat Commun 2021;12:2574.
  15. Nguyen VB, Park HS, Lee SC, Lee J, Park JY, Yang TJ. Authentication markers for five major panax species developed via comparative analysis of complete chloroplast genome sequences. J Agric Food Chem 2017;65:6298-306.
  16. Shim H, Waminal NE, Kim HH, Yang TJ. Dynamic evolution of Panax species. Genes Genomics 2021;43:209-15.
  17. He M, Huang X, Liu S, Guo C, Xie Y, Meijer AH, Wang M. The difference between white and red ginseng: variations in ginsenosides and immunomodulation. Planta Med 2018;84:845-54.
  18. Potenza MA, Montagnani M, Santacroce L, Charitos IA, Bottalico L. Ancient herbal therapy: a brief history of Panax ginseng. J Ginseng Res 2023;47:359-65.
  19. Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020;161:105263.
  20. Chen W, Balan P, Popovich DG. Comparison of ginsenoside components of various tissues of New Zealand forest-grown Asian ginseng (panax ginseng) and American ginseng (panax quinquefolium L.). Biomolecules 2020;10.
  21. Han MJ, Kim DH. Effects of red and fermented ginseng and ginsenosides on allergic disorders. Biomolecules 2020;10.
  22. Piao XM, Huo Y, Kang JP, Mathiyalagan R, Zhang H, Yang DU, Kim M, Yang DC, Kang SC, Wang YP. Diversity of ginsenoside profiles produced by various processing technologies. Molecules 2020;25.
  23. You L, Cha S, Kim MY, Cho JY. Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels. J Ginseng Res 2022;46:711-21.
  24. Takei M, Tachikawa E, Hasegawa H, Lee JJ. Dendritic cells maturation promoted by M1 and M4, end products of steroidal ginseng saponins metabolized in digestive tracts, drive a potent Th1 polarization. Biochem Pharmacol 2004;68:441-52.
  25. Takei M, Tachikawa E, Umeyama A. Dendritic cells promoted by ginseng saponins drive a potent Th1 polarization. Biomark Insights 2008;3:269-86.
  26. Wang M, Guilbert LJ, Ling L, Li J, Wu Y, Xu S, Pang P, Shan JJ. Immunomodulating activity of CVT-E002, a proprietary extract from North American ginseng (Panax quinquefolium). J Pharm Pharmacol 2001;53:1515-23.
  27. Wang M, Guilbert LJ, Li J, Wu Y, Pang P, Basu TK, Shan JJ. A proprietary extract from North American ginseng (Panax quinquefolium) enhances IL-2 and IFNgamma productions in murine spleen cells induced by Con-A. Int Immunopharmacol 2004;4:311-5.
  28. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, Min BI, Hong MC, Kim SY, Bae H. Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation. Int Immunopharmacol 2004;4:235-44.
  29. Lee JH, Min DS, Lee CW, Song KH, Kim YS, Kim HP. Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NFkappaB/c-Fos pathways. J Ginseng Res 2018;42:476-84.
  30. Shaukat A, Guo YF, Jiang K, Zhao G, Wu H, Zhang T, Yang Y, Guo S, Yang C, Zahoor A, et al. Ginsenoside Rb1 ameliorates Staphylococcus aureus-induced Acute Lung Injury through attenuating NF-kappaB and MAPK activation. Microb Pathog 2019;132:302-12.
  31. Guan X, Yuan Y, Wang G, Zheng R, Zhang J, Dong B, Ran N, Hsu AC, Wang C, Wang F. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol 2020;83:106449.
  32. Ebeling C, Wu Y, Skappak C, Gordon JR, Ilarraza R, Adamko DJ. Compound CVTE002 attenuates allergen-induced airway inflammation and airway hyperresponsiveness, in vivo. Mol Nutr Food Res 2011;55:1905-8.
  33. Kim MH, Byon YY, Ko EJ, Song JY, Yun YS, Shin T, Joo HG. Immunomodulatory activity of ginsan, a polysaccharide of panax ginseng, on dendritic cells. KOREAN J PHYSIOL PHARMACOL 2009;13:169-73.
  34. Meng J, Meng Y, Liang Z, Du L, Zhang Z, Hu X, Shan F. Phenotypic and functional analysis of the modification of murine bone marrow dendritic cells (BMDCs) induced by neutral Ginseng polysaccharides (NGP). Hum Vaccin Immunother 2013;9:233-41.
  35. Liu S, Yang Y, Qu Y, Guo X, Yang X, Cui X, Wang C. Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells. Int J Biol Macromol 2020;161:797-809.
  36. Hwang SH, Shin MS, Yoon TJ, Shin KS. Immunoadjuvant activity in mice of polysaccharides isolated from the leaves of Panax ginseng C.A. Meyer. Int J Biol Macromol 2018;107:2695-700.
  37. Zhang W, Cho SY, Xiang G, Min KJ, Yu Q, Jin JO. Ginseng berry extract promotes maturation of mouse dendritic cells. PLoS One 2015;10:e0130926.
  38. Sun HX, Ye YP, Pan HJ, Pan YJ. Adjuvant effect of Panax notoginseng saponins on the immune responses to ovalbumin in mice. Vaccine 2004;22:3882-9.
  39. Sun J, Hu S, Song X. Adjuvant effects of protopanaxadiol and protopanaxatriol saponins from ginseng roots on the immune responses to ovalbumin in mice. Vaccine 2007;25:1114-20.
  40. Sun J, Song X, Hu S. Ginsenoside Rg1 and aluminum hydroxide synergistically promote immune responses to ovalbumin in BALB/c mice. Clin Vaccine Immunol 2008;15:303-7.
  41. Yang Z, Chen A, Sun H, Ye Y, Fang W. Ginsenoside Rd elicits Th1 and Th2 immune responses to ovalbumin in mice. Vaccine 2007;25:161-9.
  42. Lee YJ, Son YM, Gu MJ, Song KD, Park SM, Song HJ, Kang JS, Woo JS, Jung JH, Yang DC, et al. Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells. J Ginseng Res 2015;39:29-37.
  43. Bae J, Koo J, Kim S, Park TY, Kim MY. Ginsenoside Rp1 exerts anti-inflammatory effects via activation of dendritic cells and regulatory T cells. J Ginseng Res 2012;36:375-82.
  44. Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy 2014;44:620-30.
  45. Kim G, Lee Y, You JS, Hwang W, Hwang J, Kim HY, Kim J, Jo A, Park IH, Ali M, et al. A moonlighting protein secreted by a nasal microbiome fortifies the innate host defense against bacterial and viral infections. Immune Netw 2023;23:e31.
  46. Jo S, Na HG, Choi YS, Bae CH, Song SY, Kim YD. Saponin attenuates diesel exhaust particle (DEP)-induced MUC5AC expression and pro-inflammatory cytokine upregulation via TLR4/TRIF/NF-kappaB signaling pathway in airway epithelium and ovalbumin (OVA)-sensitized mice. J Ginseng Res 2022;46:801-8.
  47. Lee JW, Kim MO, Song YN, Min JH, Kim SM, Kang MJ, Oh ES, Lee RW, Jung S, Ro H, et al. Compound K ameliorates airway inflammation and mucus secretion through the regulation of PKC signaling in vitro and in vivo. J Ginseng Res 2022;46:496-504.
  48. Heo H, Kim Y, Cha B, Brito S, Kim H, Kim H, Fatombi BM, Jung SY, Lee SM, Lei L, et al. A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells. J Ginseng Res 2023;47:97-105.
  49. Xue K, Ruan L, Hu J, Fu Z, Tian D, Zou W. Panax notoginseng saponin R1 modulates TNF-alpha/NF-kappaB signaling and attenuates allergic airway inflammation in asthma. Int Immunopharmacol 2020;88:106860.
  50. Zhang Y, Song Y, Wang C, Jiang J, Liu S, Bai Q, Li L, Jin H, Jin Y, Yan G. Panax notoginseng saponin R1 attenuates allergic rhinitis through AMPK/Drp1 mediated mitochondrial fission. Biochem Pharmacol 2022;202:115106.
  51. Bae HM, Cho OS, Kim SJ, Im BO, Cho SH, Lee S, Kim MG, Kim KT, Leem KH, Ko SK. Inhibitory effects of ginsenoside re isolated from ginseng berry on histamine and cytokine release in human mast cells and human alveolar epithelial cells. J Ginseng Res 2012;36:369-74.
  52. Jin Y, Tangchang W, Kwon OS, Lee JY, Heo KS, Son HY. Ginsenoside Rh1 ameliorates the asthma and allergic inflammation via inhibiting Akt, MAPK, and NF-kappaB signaling pathways in vitro and in vivo. Life Sci 2023;321:121607.
  53. Lee IS, Uh I, Kim KS, Kim KH, Park J, Kim Y, Jung JH, Jung HJ, Jang HJ. Antiinflammatory effects of ginsenoside Rg3 via NF-kappaB pathway in A549 cells and human asthmatic lung tissue. J Immunol Res 2016;2016:7521601.
  54. Huang WC, Huang TH, Yeh KW, Chen YL, Shen SC, Liou CJ. Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res 2021;45:654-64.
  55. Shin SH, Ye MK, Lee DW, Kang BJ, Chae MH. Effect of Korean red ginseng and Rg3 on asian sand dust-induced MUC5AC, MUC5B, and MUC8 expression in bronchial epithelial cells. Molecules 2021;26.
  56. Kubo M. Mast cells and basophils in allergic inflammation. Curr Opin Immunol 2018;54:74-9.
  57. Bae CH, Kim J, Nam W, Kim H, Kim J, Nam B, Park S, Lee J, Sim J. Fermented red ginseng alleviates ovalbumin-induced inflammation in mice by suppressing interleukin-4 and immunoglobulin E expression. J Med Food 2021;24:569-76.
  58. Kim HI, Kim JK, Kim JY, Han MJ, Kim DH. Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression. J Ginseng Res 2019;43:635-44.
  59. Xu C, Li L, Wang C, Jiang J, Li L, Zhu L, Jin S, Jin Z, Lee JJ, Li G, et al. Effects of GRh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-kappaB and MAPK-Nrf2/NF-kappaB pathways. J Ginseng Res 2022;46:550-60.
  60. Park EK, Choo MK, Kim EJ, Han MJ, Kim DH. Antiallergic activity of ginsenoside Rh2. Biol Pharm Bull 2003;26:1581-4.
  61. Kim DY, Ro JY, Lee CH. 20(S)-Protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation. J Ginseng Res 2015; 39:189-98.
  62. Oh HA, Seo JY, Jeong HJ, Kim HM. Ginsenoside Rg1 inhibits the TSLP production in allergic rhinitis mice. Immunopharmacol Immunotoxicol 2013;35:678-86.
  63. Kee JY, Hong SH. Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway. J Ginseng Res 2019;43:282-90.
  64. Babayigit A, Olmez D, Karaman O, Bagriyanik HA, Yilmaz O, Kivcak B, Erbil G, Uzuner N. Ginseng ameliorates chronic histopathologic changes in a murine model of asthma. Allergy Asthma Proc 2008;29:493-8.
  65. Kim DY, Yang WM. Panax ginseng ameliorates airway inflammation in an ovalbumin-sensitized mouse allergic asthma model. J Ethnopharmacol 2011;136:230-5.
  66. Lim CY, Moon JM, Kim BY, Lim SH, Lee GS, Yu HS, Cho SI. Comparative study of Korean White Ginseng and Korean Red Ginseng on efficacies of OVA-induced asthma model in mice. J Ginseng Res 2015;39:38-45.
  67. Kim JH, Kim JW, Kim CY, Jeong JS, Lim JO, Ko JW, Kim TW. Korean red ginseng ameliorates allergic asthma through reduction of lung inflammation and oxidation. Antioxidants 2022;11.
  68. Lim YJ, Na HS, Yun YS, Choi IS, Oh JS, Rhee JH, Cho BH, Lee HC. Suppressive effects of ginsan on the development of allergic reaction in murine asthmatic model. Int Arch Allergy Immunol 2009;150:32-42.
  69. Ryu JH, Woo MS, Cao DL, Kim EJ, Jeong YY, Koh EH, Cho KM, Kang SS, Kang D. Fermented and aged ginseng sprouts (panax ginseng) and their main component, compound K, alleviate asthma parameters in a mouse model of allergic asthma through suppression of inflammation, apoptosis, ER stress, and ferroptosis. Antioxidants 2022;11.
  70. Chen T, Xiao L, Zhu L, Ma S, Yan T, Ji H. Anti-asthmatic effects of ginsenoside Rb1 in a mouse model of allergic asthma through relegating Th1/Th2. Inflammation 2015;38:1814-22.
  71. Jung ID, Kim HY, Park JW, Lee CM, Noh KT, Kang HK, Heo DR, Lee SJ, Son KH, Park HJ, et al. RG-II from Panax ginseng C.A. Meyer suppresses asthmatic reaction. BMB Rep. 2012;45:79-84.
  72. Li Q, Zhai C, Wang G, Zhou J, Li W, Xie L, Shi Z. Ginsenoside Rh1 attenuates ovalbumin-induced asthma by regulating Th1/Th2 cytokines balance. Biosci Biotechnol Biochem 2021;85:1809-17.
  73. Li LC, Piao HM, Zheng MY, Lin ZH, Choi YH, Yan GH. Ginsenoside Rh2 attenuates allergic airway inflammation by modulating nuclear factor-kappaB activation in a murine model of asthma. Mol Med Rep 2015;12:6946-54.
  74. Jung JH, Kang IG, Kim DY, Hwang YJ, Kim ST. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis. J Ginseng Res. 2013;37:167-75.
  75. Liu J, Yang N, Yi X, Wang G, Wang C, Lin H, Sun L, Wang F, Zhu D. Integration of transcriptomics and metabolomics to reveal the effect of ginsenoside Rg3 on allergic rhinitis in mice. Food Funct 2023;14:2416-31.
  76. Daley D. The evolution of the hygiene hypothesis: the role of early-life exposures to viruses and microbes and their relationship to asthma and allergic diseases. Curr Opin Allergy Clin Immunol 2014;14:390-6.
  77. Zakeri A, Russo M. Dual role of toll-like receptors in human and experimental asthma models. Front Immunol 2018;9:1027.
  78. Jung JH, Kang TK, Oh JH, Jeong JU, Ko KP, Kim ST. The effect of Korean red ginseng on symptoms and inflammation in patients with allergic rhinitis. Ear Nose Throat J 2021;100. 712S-9S.
  79. Hsu CH, Lu CM, Chang TT. Efficacy and safety of modified Mai-Men-Dong-Tang for treatment of allergic asthma. Pediatr Allergy Immunol 2005;16:76-81.
  80. Jung JW, Kang HR, Ji GE, Park MS, Song WJ, Kim MH, Kwon JW, Kim TW, Park HW, Cho SH, et al. Therapeutic effects of fermented red ginseng in allergic rhinitis: a randomized, double-blind, placebo-controlled study. Allergy Asthma Immunol Res 2011;3:103-10.
  81. Siegel RK. Ginseng abuse syndrome. Problems with the panacea. JAMA 1979;241:1614-5.
  82. Paik DJ, Lee CH. Review of cases of patient risk associated with ginseng abuse and misuse. J Ginseng Res. 2015;39:89-93.
  83. Kim KM, Kwon HS, Jeon SG, Park CH, Sohn SW, Kim DI, Kim SS, Chang YS, Kim YK, Cho SH, et al. Korean ginseng-induced occupational asthma and determination of IgE binding components. J Korean Med Sci. 2008;23:232-5.
  84. Lee JY, Lee YD, Bahn JW, Park HS. A case of occupational asthma and rhinitis caused by Sanyak and Korean ginseng dusts. Allergy 2006;61:392-3.
  85. Lee JY, Jin HJ, Park JW, Jung SK, Jang JY, Park HS. A case of Korean ginsenginduced anaphylaxis confirmed by open oral challenge and basophil activation test. Allergy Asthma Immunol Res 2012;4:110-1.