DOI QR코드

DOI QR Code

최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상

Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions

  • 김지훈 ((주)휴에버그린팜) ;
  • 홍선우 (인하대학교 생명공학과) ;
  • 김진우 (인하대학교 생명공학과) ;
  • 손병락 (대구경북과학기술원 에너지융합연구부) ;
  • 김미경 ((주)에코파이코텍) ;
  • 김용환 ((재)해양심층수산업 고성진흥원) ;
  • 설진현 ((주)워터코리아) ;
  • 전수환 ((주)휴에버그린팜)
  • 투고 : 2024.01.20
  • 심사 : 2024.03.15
  • 발행 : 2024.06.30

초록

This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.

키워드

과제정보

본 연구는 경상북도와 울진군의 '기후변화대응, 한국형 인공해초나무 도입 및 실증사업'의 지원과 과학기술정보통신부에서 지원하는 DGIST기관고유사업에 의해 수행되었습니다(24-ET-01).

참고문헌

  1. Gain A. 2021. Fossil fuel energy and environmental performance in an extended STIRPAT model. J. Cleaner Prod. 297, 126526.
  2. Chmielewski A. G. 1999. Environmental effects of fossil fuel combustion. Interactions: Energy/Environment, pp. 56-74.
  3. Vu H. T., Y. Liu, and D. V. Tran. 2019. Nationalizing a global phenomenon: A study of how the press in 45 countries and territories portrays climate change. Glob. Environ. Change. 58, 101942.
  4. Ansuategi A. and M. Escapa. 2002. Economic growth and greenhouse gas emissions. Ecol. Econ. 40, 23-37. https://doi.org/10.1016/S0921-8009(01)00272-5
  5. Rae J. W.B., Y. G. Zhang, X. Liu, G. L. Foster, H. M. Stoll, and R. D. M. Whiteford. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth. Planet. Sci. 49, 609-641.
  6. Vinitha E, L., K. Medlin, and J.-S. Ki. Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129-142.
  7. Gerotto C., A. Norici1, M. Giordano. 2020. Toward enhanced fixation of CO2 in aquatic biomass: focus on microalgae. Front. Energy Res. 8, 213.
  8. Legrand J., A. Artu, and J. Pruvost. 2021. A review on photobioreactor design and modelling for microalgae production. React. Chem. Eng. 6(7), 1134-1151. https://doi.org/10.1039/D0RE00450B
  9. Yadav G., B. K. Dubey, and R. Sen. 2020. A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. J. Cleaner Prod. 258, 120703.
  10. https://liquid3.rs/
  11. https://www.filtsep.com/content/features/turning-pollutant-gases-into-oxygen/
  12. Kim, Z.-H., H. Park, Y.-J. Ryu, D.-W. Shin, S.-J. Hong, H.-L. Tran, S.-M. Lim, and C.-G. Lee. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27, 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
  13. Cheah W. Y., P. L. Show, J.-S. Chang, T. C. Ling, and J. C. Juan. 2015. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Biresour. Technol. 184, 190-201. https://doi.org/10.1016/j.biortech.2014.11.026
  14. Jeon, H., Lee, Y., Chang, K. S., Lee, C.-G., and E. Jin. 2013. Enhanced production of biomass and lipids by supplying CO2 in marine microalga Dunaliella sp. J. Microbiol. 51, 773-776. https://doi.org/10.1007/s12275-013-3256-9
  15. Hong S. J., H. Kim, J. Min, H. Park, Z.-H. Kim, C. S. Lee, E. Jin, and C.-G. Lee. 2023. Effect of Light Intensity on Cell Growth and Carotenoids Production in Chlamydomonas reinhardtii dZL. J. Mar. Biosci. Biotechnol. 15(2), 82-89.
  16. Ramos-Ibarra J.R., R. Snell-Castro, J.A. Neria-Casillas and F.J. Choix. 2019. Biotechnological potential of Chlorella sp. and Scenedesmus sp. microalgae to endure high CO2 and methane concentrations from biogas. Bioprocess Biosys. Eng. 42, 1603-1610. https://doi.org/10.1007/s00449-019-02157-y
  17. Oh S.-J., H.-K. Kwon, J.-Y. Jeon, and H.-S. Yang. 2015. Effect of monochromatic light emitting diode on the growth of four microalgae species (Chlorella vulgaris, Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp.). J. Korean Soc. Mar. Environ. Saf. 21(1), 1-8. https://doi.org/10.7837/kosomes.2015.21.1.001
  18. Lee W.-K., Y.-K. Ryu, W.-Y. Choi, T. Kim, A. Park, Y.-J. Lee, Y. Jeong, C.-G. Lee, and D.-H. Kang. 2021. Year-round cultivation of Tetraselmis sp. for essential lipid production in a semi-open raceway system. Mar. Drugs. 19(6), 314.
  19. Lee S. Y., J. S. Lee, and S. J. Sim. 2023. Enhancement of microalgal biomass productivity through mixotrophic culture process utilizing waste soy sauce and industrial flue gas. Bioresour. Technol. 373, 128719.
  20. Andersen. C. B. 2002. Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems, J. Geosci. Educ. 50(4), 389-403. https://doi.org/10.5408/1089-9995-50.4.389
  21. Kim Z.-H., K. J. Yim, S.-J. Hong, H. Jang, H.-J. Jang, S. M. Yun, S. H. Lee, C.-G. Lee, and C. S. Lee. 2023. Improving biomass productivity of freshwater microalga, Parachlorella sp. by controlling gas supply rate and light intensity in a bubble column photobioreactor. J. Mar. Biosci. Biotechnol.15(2), 41-48.
  22. Babich I.V., M. Hulst, L. Lefferts, J.A. Moulijn, P. O'Connor, and K. Seshan. 2011. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy. 35(7), 3199-3207. https://doi.org/10.1016/j.biombioe.2011.04.043
  23. Kebelmann K., A. Hornung, U. Karsten, and G. Griffiths. 2013. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy. 49, 38-48.  https://doi.org/10.1016/j.biombioe.2012.12.006