DOI QR코드

DOI QR Code

클로렐라에서 바이너리 벡터를 이용한 hSCF와 hINFγ 단백질의 안정적인 발현과 효율적인 분비

Stable Expression and Efficient Secretion of hSCF and hINFγ Protein using Binary Vectors in Chlorella vulgaris

  • 정유정 ((주)바이오이즈 중앙연구소) ;
  • 민희경 ((주)바이오이즈 중앙연구소) ;
  • 이원영 ((주)바이오이즈 중앙연구소) ;
  • 김성천 ((주)바이오이즈 중앙연구소)
  • 투고 : 2024.03.13
  • 심사 : 2024.04.04
  • 발행 : 2024.06.30

초록

Microalgae have great potential in the biomedical and pharmaceutical industries as a new type of bioreactor that can produce proteins for specific purposes, including recombinant proteins, pharmaceuticals, and industrial enzymes. Despite the production advantages and importance of microalgae-based expression systems, studies on secretion efficiency are limited. In this study, for stable expression and efficient secretion of the heterologous protein (human SCF and human INFγ) in Chlorella vulgaris, we constructed SP:hSCF:His and SP:hINFγ:His plant binary vectors using the signal peptide (SP) of Chlamydomonas reinhardtii, and we obtained stable transformants through the effective agrobacterium-mediated transformation of these vectors. Transformants with accurately inserted hSCF and hINFγ demonstrated stably increased mRNA and protein expression using RT-PCR and western blotting under the same culture conditions. Following the analysis of the proteins secreted into the culture medium using ELISA, it was confirmed that hINFγ was effectively produced in the transformed C. vulgaris culture medium. The overall findings indicate that the combination of heterologous protein and SP may be crucial for ensuring the expression and secretion of recombinant proteins in Chlorella culture systems.

키워드

참고문헌

  1. Cuellar-Bermudez, S. P., Aguilar-Hernandez, I., Cardenas-Chavez, D. L., Ornelas-Soto, N., Romero-Ogawa, M. A. and Parra-Saldivar, R. 2015. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 8(2), 190-209.  https://doi.org/10.1111/1751-7915.12167
  2. Sathasivam, R., Radhakrishnan, R., Hashem, A. and Abd Allah, E. F. 2019. Microalgae metabolites: A rich source for food and medicine. Saudi. J. Biol. Sci. 26(4), 709-722.  https://doi.org/10.1016/j.sjbs.2017.11.003
  3. Gong, Y., Hu, H., Gao, Y., Xu, X. and Gao, H. 2011. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J. Ind. Microbiol Biotechnol. 38(12), 1879-1890.  https://doi.org/10.1007/s10295-011-1032-6
  4. El-Ayouty, Y., El-Manawy, I., Nasih, S., Hamdy, E. and Kebeish, R. 2019. Engineering Chlamydomonas reinhardtii for Expression of Functionally Active Human Interferon-α. Mol. Biotechnol. 61(2), 134-144.  https://doi.org/10.1007/s12033-018-0143-y
  5. Rasala, B. A. and Mayfield, S. P. 2015. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth. Res. 123(3), 227-239.  https://doi.org/10.1007/s11120-014-9994-7
  6. Khavari, F., Saidijam, M., Taheri, M. and Nouri, F. 2021. Microalgae: therapeutic potentials and applications. Mol. Biol. Rep. 48(5), 4757-4765.  https://doi.org/10.1007/s11033-021-06422-w
  7. Fu, W., Nelson, D. R., Mystikou, A., Daakour, S. and Salehi-Ashtiani, K. 2019. Advances in microalgal research and engineering development. Curr. Opin. Biotechnol. 59, 157-164.  https://doi.org/10.1016/j.copbio.2019.05.013
  8. Hempel, F. and Maier, U. G. 2012. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb. Cell Fact. 11, 126. 
  9. Yan, N., Fan, C., Chen, Y. and Hu, Z. 2016. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int. J. Mol. Sci. 17(6), 962. 
  10. Wen, B., Deng, Y., Guan, J., Yan, W., Wang, Y., Tan, W. and Gao, J. 2011. Signal peptide replacements enhance expression and secretion of hepatitis C virus envelope glycoproteins. Acta. Biochim. Biophys. Sin (Shanghai). 43(2), 96-102.  https://doi.org/10.1093/abbs/gmq117
  11. Futatsumori-Sugai, M. and Tsumoto, K. 2010. Signal peptide design for improving recombinant protein secretion in the baculovirus expression vector system. Biochem. Biophys. Res. Commun. 391(1), 931-935. https://doi.org/10.1016/j.bbrc.2009.11.167
  12. Heitzer, M., Eckert, A., Fuhrmann, M. and Griesbeck, C. 2007. Influence of codon bias on the expression of foreign genes in microalgae. Adv. Exp. Med. Biol. 616, 46-53.  https://doi.org/10.1007/978-0-387-75532-8_5
  13. Malla, A., Rosales-Mendoza, S., Phoolcharoen, W. and Vimolmangkang, S. 2021. Efficient Transient Expression of Recombinant Proteins Using DNA Viral Vectors in Freshwater Microalgal Species. Front. Plant Sci. 12, 650820. 
  14. Nakamura, Y., Gojobori, T. and Ikemura, T. 2000. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28(1), 292. 
  15. Weber, E., Birkenfeld, J., Franz, J., Gritzan, U. Linden L. and Trautwein M. 2017. Modular Protein Expression Toolbox (MoPET), a standardized assembly system for defined expression constructs and expression optimization libraries. PLoS One. 12(5), e0176314. 
  16. Freudl, R. 2018. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact. 29, 17(1):52. 
  17. Lauersen, K. J., Berger, H., Mussgnug, J. H. and Kruse, O. 2013. Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J. Biotechnol. 167(2), 101-110. https://doi.org/10.1016/j.jbiotec.2012.10.010
  18. Shin, J. H., Choi, J., Jeon, J., Kumar, M., Lee, J., Jeong, W. J. and Kim, S. R. 2020. The establishment of new protein expression system using N starvation inducible promoters in Chlorella. Sci. Rep. 10(1), 12713.
  19. Zhuang, H., Ou, Y., Chen, R., Huang, D. and Wang, C. 2023. Comparing the Ability of Secretory Signal Peptides for Heterologous Expression of Anti-Lipopolysaccharide Factor 3 in Chlamydomonas reinhardtii. Mar. Drugs. 21(6), 346.
  20. Molino, J. V. D., de Carvalho, J. C. M. and Mayfield, S. P. 2018. Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS One. 13(2), e0192433.
  21. Saxton, R. A., Glassman, C. R. and Garcia, K. C. 2023. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug. Discov. 22, 21-37.
  22. Deckers, J., Anbergen, T., Hokke, A. M., de Dreu, A., Schrijver, D. P., de Bruin, K., Toner, Y. C., Beldman, T. J., Spangler, J. B., de Greef, T. F. A., Grisoni, F., van der Meel, R., Joosten, L. A. B., Merkx, M., Netea, M. G. and Mulder, W. J. M. 2023. Engineering cytokine therapeutics. Nat. Rev. Bioeng. 1(4), 286-303. https://doi.org/10.1038/s44222-023-00030-y
  23. Lennartsson, J. and Ronnstrand, L. 2012. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol. Rev. 92(4), 1619-1649. https://doi.org/10.1152/physrev.00046.2011
  24. Cardoso, H. J., Figueira, M. I. and Socorro, S. 2017. The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer. J. Cell Commun. Signal. 11(4), 297-307. https://doi.org/10.1007/s12079-017-0399-1
  25. Lee, E., de Paula, M. N., Baek, S., Ta, H. K. K., Nguyen, M. T., Jeong, T. H., Kim, C. J., Jang, Y. J. and Choe, H. 2021. Novel Bacterial Production of Two Different Bioactive Forms of Human Stem-Cell Factor. Int. J. Mol. Sci. 22(12), 6361.
  26. Wu, L., Estrada, O., Zaborina, O., Bains, M., Shen, L., Kohler, J. E., Patel, N., Musch, M. W., Chang, E. B., Fu, Y. X., Jacobs, M. A., Nishimura M. I., Hancock, R. E., Turner, J. R. and Alverdy, J. C. 2005. Recognition of host immune activation by Pseudomonas aeruginosa. Science. 309(5735), 774-777. https://doi.org/10.1126/science.1112422
  27. Mendoza, J. L., Escalante, N. K., Jude, K. M., Sotolongo Bellon, J., Su, L., Horton, T. M., Tsutsumi, N., Berardinelli, S. J., Haltiwanger, R. S., Piehler, J., Engleman, E. G. and Garcia K. C. 2019. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 567(7746), 56-60. https://doi.org/10.1038/s41586-019-0988-7
  28. Castro, L. S., Lobo, G. S., Pereira, P., Freire, M. G., Neves, M. C. and Pedro, A. Q. 2021. Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation. Vaccines (Basel). 9(4), 328.
  29. Ortiz-Matamoros, M. F., Villanueva M, A. and Islas-Flores, T. 2018. Genetic transformation of cell-walled plant and algae cells: delivering DNA through the cell wall. Brief. Funct. Genomics. 17(1), 26-33. https://doi.org/10.1093/bfgp/elx014
  30. Stanier, R. Y., Kunisawa, R., Mandel, M. and Cohen-Bazire, G. 1971. Purifcation and properties of unicellular blue-green algae (order Chroococcales). Bac. Rev. 35, 171-205.
  31. Fujiwara, S., Fukuzawa, H., Tachiki, A. and Miyachi, S. 1990. Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 87(24), 9779-9783. https://doi.org/10.1073/pnas.87.24.9779
  32. Holsters, M., de Waele, D., Depicker, A. and Messens, E,, van Montagu, M., and Schell, J. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163, 181-187. https://doi.org/10.1007/BF00267408
  33. Cha, T. S., Yee, W. and Aziz, A. 2012. Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J. Microbiol. Biotechnol. 28(4), 1771-1779. https://doi.org/10.1007/s11274-011-0991-0
  34. Koyama, T., Nakamoto, M., Morishima, K., Yamashita, R., Yamashita, T., Sasaki, K., Kuruma, Y., Mizuno, N., Suzuki, M., Okada, Y., Ieda, R., Uchino, T., Tasumi, S., Hosoya, S., Uno, S., Koyama, J., Toyoda, A., Kikuchi, K. and Sakamoto, T. 2019. A SNP in a Steroidogenic Enzyme Is Associated with Phenotypic Sex in Seriola Fishes. Curr. Biol. 29(11), 1901-1909. https://doi.org/10.1016/j.cub.2019.04.069
  35. Ye, L., Zhao, F., Yang, Q., Zhang, J., Li, Q., Wang, C., Guo, Z., Yang, Y. and Zhu, Z. 2018. OK/basigin expression on red blood cells varies between blood donors and correlates with binding of recombinant Plasmodium falciparum reticulocyte-binding protein homolog 5. Transfusion. 58(8), 2046-2053. https://doi.org/10.1111/trf.14635
  36. Amack, S. C. and Antunes, M. S. 2020. CaMV35S promoter-a plant biology and biotechnology workhorse in the era of synthetic biology. Curr. Opin. Plant Biol. 24, 100179.
  37. Ruiz-Ruiz, F., Torres-Acosta, M. A., Garcia-Echauri, S. A., Aguilar-Yanez, J. M., Rito-Palomares, M., and Ruiz-Ruiz, F. 2018. Genetic Manipulation of Microalgae for the Production of Bioproducts. Front. Biosci. 10, 254-275. https://doi.org/10.2741/e821
  38. Montero-Lobato, Z., Vazquez, M., Navarro, F., Fuentes, J.L., Bermejo, E., Garbayo, I., and Vilchez, C. and Cuaresma, M. 2018. Chemically-Induced Production of Anti-Inflammatory Molecules in Microalgae. Mar. Drugs. 16(12), 478.
  39. Bai, L. L., Yin, W. B., Chen, Y. H., Niu, L. L., Sun, Y. R., Zhao, S. M., Yang, F. Q., Wang, R. R., Wu, Q., Zhang, X. Q. and Hu, Z. M. 2013. A new strategy to produce a defensin: stable production of mutated NP-1 in nitrate reductase-deficient Chlorella ellipsoidea. PLoS One. 8(1), e54966.