참고문헌
- Khan, M. I., Shin, J. H. and Kim. J. D. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17(1), 36.
- Mehariya, S., Goswami, R. K., Karthikeysan, O. P. and Verma, P. 2021. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere. 280, 130553.
- Ummalyma, S. B., Sirohi, R., Udayan, A., Yadav, P., Raj, A., Sim, S. J. and Pandey, A. 2022. Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review. Phytochem. Rev. 13, 1-23.
- Khavari, F., Saidijam, M., Taheri, M. and Nouri, F. 2021. Microalgae: therapeutic potentials and applications. Mol. Biol. Rep. 48(5), 4757-4765. https://doi.org/10.1007/s11033-021-06422-w
- Kiran, B. R. and Venkata Mohan, S. 2021. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications. Plants (Basel). 10(5), 836.
- Xia, D., Qiu, W., Wang, X. and Liu, J. 2021. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar. Drugs. 19(12), 70.
- Jareonsin, S. and Pumas, C. 2021. Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production. Front Bioeng. Biotechnol. 9, 628597.
- Siddiqui, A., Wei, Z., Boehm, M. and Ahmad, N. 2020. Engineering microalgae through chloroplast transformation to produce high-value industrial products. Biotechnol. Appl. Biochem. 67(1), 30-40. https://doi.org/10.1002/bab.1823
- Yan, N., Fan, C., Chen, Y. and Hu, Z. 2016. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int. J. Mol. Sci. 17(6), 962.
- Sreenikethanam, A., Raj, S., J. R. B., Gugulothu, P. and Bajhaiya, A. K. 2022. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Front. Bioeng. Biotechnol. 10, 836056.
- Yang, B., Liu, J., Liu, B., Sun, P., Ma, X., Jiang, Y., Wei, D. and Chen, F. 2015. Development of a stable genetic system for Chlorella vulgaris: a promising green alga for CO2 biomitigation. Algal Res. 12, 134-141. https://doi.org/10.1016/j.algal.2015.08.012
- Ortiz-Matamoros, M. F., Villanueva M, A. and Islas-Flores, T. 2018. Genetic transformation of cell-walled plant and algae cells: delivering DNA through the cell wall. Brief. Funct. Genomics. 17(1), 26-33. https://doi.org/10.1093/bfgp/elx014
- Ruiz-Ruiz, F., Torres-Acosta, M. A., Garcia-Echauri, S. A., Aguilar-Yanez, J. M., Rito-Palomares, M., and Ruiz-Ruiz, F. 2018. Genetic Manipulation of Microalgae for the Production of Bioproducts. Front. Biosci. 10, 254-275. https://doi.org/10.2741/e821
- Cha, T. S., Yee, W. and Aziz, A. 2012. Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J. Microbiol. Biotechnol. 28(4), 1771-1779. https://doi.org/10.1007/s11274-011-0991-0
- Siripornadulsil, S., Dabrowski, K. and Sayre, R. 2007. Microalgal vaccines. Adv. Exp. Med. Biol. 616, 122-128. https://doi.org/10.1007/978-0-387-75532-8_11
- Hawkins, R. L. and Nakamura, M. 1999. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr. Microbiol. 38(6), 335-341. https://doi.org/10.1007/PL00006813
- Kim, D. H., Kim, Y. T., Cho, J. J., Bae, J. H., Hur, S. B., Hwang, I. and Choi, T. J. 2002. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar. Biotechnol (NY). 4(1), 63-73. https://doi.org/10.1007/s1012601-0070-x
- Shin, J. H., Choi, J., Jeon, J., Kumar, M., Lee, J., Jeong, W. J. and Kim, S. R. 2020. The establishment of new protein expression system using N starvation inducible promoters in Chlorella. Sci. Rep. 10(1), 12713.
- Terpe, K. 2006. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72(2), 211-222. https://doi.org/10.1007/s00253-006-0465-8
- Fu, H., Liang, Y, Zhong, X., Pan, Z., Huang, L., Zhang, H., Xu, Y., Zhou, W. and Liu, Z. 2020. Codon optimization with deep learning to enhance protein expression. Sci. Rep. 10(1), 17617.
- Schutz, A., Bernhard, F., Berrow, N., Buyel, J. F., Ferreira-da-Silva, F., Haustraete, J., van den Heuvel, J, Hoffmann J. E., de Marco A., Peleg Y., Suppmann, S., Unger, T., Vanhoucke, M., Witt, S. and Remans, K. 2023. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc. 4(4), 102572.
- Arai, K. I., Lee, F., Miyajima, A., Miyatake, S., Arai, N. and Yokota, T. 1990. Cytokines: coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59, 783-836. https://doi.org/10.1146/annurev.bi.59.070190.004031
- Anderlini, P., Przepiorka, D., Champlin R. and Korbling M. 1996. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood. 88, 2819-2825. https://doi.org/10.1182/blood.V88.8.2819.bloodjournal8882819
- Becher, B., Tugues, S. and Greter, M. 2016. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity. 45(5), 963-973. https://doi.org/10.1016/j.immuni.2016.10.026
- Hamilton, J.A. 2020. GM-CSF in inflammation. J. Exp, Med. 217(1), e20190945.
- Pastore, S., Mascia, F., Mariani, V. and Girolomoni, G. 2008. The epidermal growth factor receptor system in skin repair and inflammation. J. Invest. Dermatol. 128(6), 1365-1374. https://doi.org/10.1038/sj.jid.5701184
- Berlanga-Acosta, J., Gavilondo-Cowley. J., Lopez-Saura, P., Gonzalez-Lopez, T., Castro-Santana, M. D., Lopez-Mola, E., Guillen-Nieto, G. and Herrera-Martinez, L. 2009. Epidermal growth factor in clinical practice - a review of its biological actions, clinical indications and safety implications. Int. Wound J. 6(5), 331-346. https://doi.org/10.1111/j.1742-481X.2009.00622.x
- Shin, S. H., Koh, Y. G., Lee, W. G., Seok, J. and Park, K. Y. 2023. The use of epidermal growth factor in dermatological practice. Int. Wound J. 20(6), 2414-2423. https://doi.org/10.1111/iwj.14075
- Fukuzawa, H., Fujiwara, S., Yamamoto, Y., Dionisio-Sese, M. L. and Miyachi, S. 1990. cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc. Natl. Acad. Sci USA. 87(11), 4383-4387. https://doi.org/10.1073/pnas.87.11.4383
- Froger, A. and Hall, J. E. 2007. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 6, 253.
- Holsters, M., de Waele, D., Depicker, A., Messens, E., van Montagu, M. and Schell, J. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163, 181-187. https://doi.org/10.1007/BF00267408
- Hofgen, R. and Willmitzer, L. 1988. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16(20), 9877.
- Weeks, D. P., Beerman, N. and Griffith, O. M. 1986. A small-scale five-hour procedure for isolating multiple samples of CsCl-purified DNA: application to isolations from mammalian, insect, higher plant, algal, yeast, and bacterial sources. Anal. Biochem. 152(2), 376-385. https://doi.org/10.1016/0003-2697(86)90423-9
- Vennapusa, A. R., Somayanda1, C. J. and Jagadish, S. V. K. 2020. A universal method for highquality RNA extraction from plant tissues rich in starch, proteins and fiber. Scientific Rep. 10, 16887.
- Dasan, Y. K., Lam, M. K., Yusup, S., Lim, J. W., Show, P. L., Tan, I. S. and Lee, K. T. 2020. Cultivation of Chlorella Vulgaris Using Sequential-Flow Bubble Column Photobioreactor: A Stress-Inducing Strategy for Lipid Accumulation and Carbon Dioxide Fixation. J. CO2 Util. 41, 101226.
- Diaz C. J., Douglas, K. J., Kang, K., Kolarik, A. L., Malinovski, R., Torres-Tiji, Y., Molino, J. V., Badary, A. and Mayfield, S. P. 2023. Developing algae as a sustainable food source. Front. Nutr. 9, 1029841.
- Amack, S. C. and Antunes, M. S. 2020. CaMV35S promoter-a plant biology and biotechnology workhorse in the era of synthetic biology. Curr. Opin. Plant Biol. 24, 100-179.
- Harmoko, R., Fanata, W. I., Yoo, J. Y., Ko, K. S., Rim, Y. G., Uddin, M. N., Siswoyo, T. A., Lee, S. S., Kim, D. Y., Lee, S. Y. and Lee, K. O. 2013. RNA-dependent RNA polymerase 6 is required for efficient hpRNA-induced gene silencing in plants. Mol. Cells. 35(3), 202-209. https://doi.org/10.1007/s10059-013-2203-2